Chứng tỏ rằng a2 + 3a + 1 không thể chia hết cho 2, với a thuộc Z
Chứng tỏ rằng với mọi n thuộc Z thì (n+1)(n+2)+12 không chia hết cho 9
(n+1)(n+2)+12
=(n+1)*n+(n+1)*2+12
=n2+1n+2n+2+12
=n2+(1+2)n+(2+12)
=n2+3n+14
=n*n+3n+14
=n(n+3)+14
Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9
nên n(n+3)+14 không chia hết cho 9
nên (n+1)(n+2)+12 không chia hết cho 9 với mọi n
Vậy với mọi n thuộc Z thì (n+1)(n+2)+12 không chia hết cho 9
cái này mình làm bậy, ko biết có đúng k
chúc bạn học tốt!^_^
nếu n = 2 => (n+1)(n+2) + 12 = 24 không chia hết cho 9
=> (n+1)(n+2) + 12 không chia hết cho 9 với mọi n
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm
\(n^2+n+3=n\left(n+1\right)+3\)
Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ
Vậy n^2+n+3 ko chia hết cho 2
1/Cho a+b chia hết cho 7, chứng tỏ rằng các biểu thức sau đây chia hết cho 7
a) a+8b
b) 3a-11b
c) 5a-2b-2009
2/ Cho x, y thuộc Z, chứng tỏ rằng:
a) Nếu 20x+11y chia hết cho 2008 thì 1998x+1997y chia hết cho 2008
b) Nếu 19x-5y chia hết cho 2010 thì 1510y-110x chia hết cho 2010.
CÁC BẠN LÀM GIÚP MÌNH VỚI BÀI NÀO CŨNG ĐƯỢC, AI LÀM NHANH VÀ ĐÚNG SẼ NHÂN*
do a+b chia hết cho 7 =>a chia hết 7,b chia hết 7=> a+8b chia hết cho 7
tương tự ở câu b
c thì chứng minh thêm 2009 chia hết cho 7 là được
Chứng tỏ rằng: Với n thuộc Z :n2 + n + 3 không chia hết cho 2
Ta có :
n2+ n + 3= n(n+1)+3
n, n+1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2, 3 không chia hết 2 nên n2+ n+ 3 không chia hết cho 2
Xe't n la`` số chẵn , ta co' : n \(⋮\)2 , n2 \(⋮\)2 => n + n2 \(⋮\)2
3 không chia hết cho 2 => n + n2 + 3 không chia hết cho 2
Xét n là số lẻ => n không chia hết cho 2 , n2 không chia hết cho 2 => n + n2 \(⋮\)2
3 không chia hết cho 2 => n + n2 + 3 không chia hết cho 2
Với n thuộc Z thì n2 + n + 3 không chia hết cho 2
Truong hop n la so duong
n la so le thi n2 cung la so le => n2 + n la so chan . Ma so chan cong voi 3 la so le => n2 + n +3 ko chia het cho 2 (1)
n la so chan thi n2 cung la so chan => n2 + n la so chan . Tuong tu (1) n2 + n + 3 ko chia het cho 2
Truong hop n la so am
n la so am le thi n2 la so duong le => n2 + n la so duong chan . Tuong tu (1) n2 + n +3 ko chia het cho 2
n la so am chan n2 la so duong chan => n2 + n la so duong chan . Tuong tu (1) n2 + n + 3 ko chia het cho 2
Nho t*ck cho minh nha
1/Cho a+b chia hết cho 7, chứng tỏ rằng các biểu thức sau đây chia hết cho 7
a) a+8b
b) 3a-11b
c) 5a-2b-2009
2/ Cho x, y thuộc Z, chứng tỏ rằng:
a) Nếu 20x+11y chia hết cho 2008 thì 1998x+1997y chia hết cho 2008
b) Nếu 19x-5y chia hết cho 2010 thì 1510y-110x chia hết cho 2010.
CÁC BẠN LÀM GIÚP MÌNH VỚI BÀI NÀO CŨNG ĐƯỢC, AI LÀM NHANH VÀ ĐÚNG SẼ NHÂN*
mình chỉ làm bài 1thooi,bài 2 rắc rối quá
Vì a+b chia hết cho 7=>a và b chia hết cho 7
a)vì a chia hết cho 7
b chia hết cho 7=>b8 chia hết cho 7
=> a+8b chia hết cho 7
b) tương tự
c)càng tương tự
Bài 1 thì dễ rồi,
a, a + 8b = a + b + 7b chia hết cho 7
b, 3a - 11b = 3(a + b) - 17b chia hết cho 7
c, 5a - 2b - 2009 = 5(a + b) -7b -2009 chia hết cho 7
Bài 2, Hơi khó, để tìm đã
a) Chứng minh rằng: a3- a chia hết cho 6 với mọi giá trị a thuộc Z
b)Cho a,b,c thuộc Z thỏa mãn: a+b+c= 450 mũ 2023. Chứng minh rằng: a2+b2+c2 chia hết cho 6
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Cho A = ax^2 +bx+c trong đó a,b,c thuộc Z , A chia hết cho 3 với x thuộc Z . Chứng tỏ rằng a,b,c chia hết cho
+ x = 0 => c chia hết cho 3
+x= 1=> a +b chia hết cho 3 (2)
+ x = -1=> a-b chia hết cho 3 (3)
(2)(3) => a chia hết cho 3; b chia hế cho 3
Cho a,b thuộc N , a không chia hết cho 2 và 3 .Chứng tỏ A=4a^2+3a+5 chia hết cho 3
Với a ko chia hết cho 3,=>a^2 chia 3 dư 1(dễ chứng minh)
Mà 4 chia 3 cx dư 1
=>4*a^2 chia 3 dư 1
Mà 3a chia hết cho 3(vì 3 chia hết cho 3) và 5 chia 3 dư 2
=>4a^2+3a+5 chia hết cho 3
Vậy......
Cho a,b thuộc N , a không chia hết cho 2 và 3 .Chứng tỏ A=4a^2+3a+5 chia hết cho 3