Timg giá trị nhỏ nhất của hàm số
\(y=\frac{3x}{2}+\frac{1}{x+1}\) với x>-1
x,y > 0 thỏa mãn x + 2y = 3 timg giá trị nhỏ nhất của :
\(P=\frac{1}{x+y}-\frac{x+5y}{12}\)
Tìm giá trị nhỏ nhất của hàm số y:\(\frac{2}{1-x}+x\)với 0<x<1
tìm giá trị nhỏ nhất của hàm số: \(y=\frac{2}{1-x}+\frac{1}{x}\) với 0<x<1
Tìm giá trị nhỏ nhất của hàm số y = ( 3x^2 + x + 1) / 3x -2 với x > 2/3
tìm giá trị nhỏ nhất của hàm số \(f_{\left(x\right)}=\frac{x}{2}+\frac{2}{x-1}\) với x>1 ???
ta có: \(f_{\left(x\right)}=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
AD cô-si ta được \(\frac{x-1}{2}+\frac{2}{x-1}\ge2\)( dấu "=" xảy ra khi x=3)
=> \(f_{\left(x\right)}\ge2+\frac{1}{2}=\frac{5}{2}\)
=> Min f(x) =5/2 tại x =3
Tìm giá trị nhỏ nhất của hàm số \(y=\frac{4}{x}+\frac{9}{1-x}\) với 0<x<1.
tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số \(y=\frac{x+1}{\sqrt{x^2+1}}\) trên [-1;2]
1. Trong tất cả các nghiệm\(\left(x,y\right)\) của ft \(2x+3y=1\) hãy chỉ ra các nghiệm để tổng \(3x^2+2y^2\) có giá trị lớn nhất.
2. Hai số dương x,y thỏa mãn \(\frac{2}{x}+\frac{3}{y}=6\). Tìm giá trị nhỏ nhất của tổng \(x+y\)
3. Tìm giá tị lớn nhất của hàm số \(y=x\left(1-x\right)^3\) với \(x\in\left[0;1\right]\).
1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.
Áp dụng BĐT BCS , ta có
\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)
\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)
Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5
2/ Áp dụng bđt AM-GM dạng mẫu số ta được
\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)
\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)
Vậy ......................................
tìm giá trị nhỏ nhất và lớn nhất của hàm số sau
\(y=\frac{x^2-x+1}{x-1}\) trên \(\left[-2;\frac{1}{2}\right]\)
ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)
giải pt y'=0
ta có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2
bảng bt
hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2