Tìm n tự nhiên không quá 200 sao cho: \(2.8^n+n^3-16n+1⋮3\)
Tìm n tự nhiên không quá 200 sao cho: \(2.8^n+n^3-16n+1⋮3\)
Tìm n tự nhiên không quá 200 sao cho: \(\left(2.8^n+n^3-16n+1\right)⋮3\)
\(\left(2\cdot8^n+n^3-16n+1\right)⋮3\)
Ta có \(2\cdot8^n+n^3-16n+1=2^{3n+1}+n\left(n-2\right)\left(n+2\right)+1\)
Vì \(2^{3n+1}⋮̸3;1⋮̸3\) nên \(2^{3n+1}+1⋮3;n\left(n-2\right)\left(n+2\right)⋮3\)
Ta thấy \(n;n-2;n+2\) là 3 số cách đều 2 nên tích của chúng chia hết cho 3
Vậy cần tìm n sao cho \(2^{3n+1}+1⋮3\)
Ta có \(1:3R2\) nên \(2^{3n+1}:3R2\)
Mà \(n< 200\Leftrightarrow2^{3n+1}< 2^{601}:3R2\)
Ta thấy với \(2^1;2^3;2^5;...\) đều chia 3 dư 2
Quy luật: 2 mũ lẻ chia 3 dư 2
\(\Rightarrow3n+1\in\left\{1;3;5;...;601\right\}\\ \Rightarrow n\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};...;\dfrac{200}{3}\right\}\)
Mà \(n\in N\)
Vậy \(n=0\)
Tìm các số tự nhiên n sao cho n2 16n 2011 là 1 số chính phương
Cho số tự nhiên an=3n2+16n+13(n\(\in N\)).Tìm các số tự nhiên n sao cho an là số chính phương
Chứng minh rằng:
n^4 - 4n^3 4n^2 + 16n chia hết cho 384 với mọi số tự nhiên n chẵn.
P/s: KHÔNG có n > 4
Bạn tham khảo tại đây nhé!!
olm.vn/hoi-dap/detail/195135296784.html
\(n^4-4n^3-4n^2+16n=n\left(n^3-4n^2-4n+16\right)\)
\(=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]=n\left(n-4\right)\left(n^2-4\right)=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)
Vì n là số tự nhiên chẵn \(\Rightarrow n=2k\)( \(k\inℕ\))
\(\Rightarrow2k\left(2k-4\right)\left(2k-2\right)\left(2k+2\right)=16k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)
Vì \(k\), \(k-2\), \(k-1\), \(k+1\)là 4 số tự nhiên liên tiếp
\(\Rightarrow\)Luôn tồn tại ít nhất 2 số chẵn liên tiếp \(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮8\)
Vì \(k\), \(k-1\), \(k+1\)là 3 số tự nhiên liên tiếp \(\Rightarrow k\left(k-1\right)\left(k+1\right)\left(k-2\right)⋮3\)
mà \(\left(3;8\right)=1\)\(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮24\)
\(\Rightarrow16k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮384\)
hay \(n^4-4n^3-4n^2+16n⋮384\)
1,cho A=3+3^2+3^3+3^4+...+3^100
tìm số tự nhiên n , biết : 2A+3=3^n
2,tìm số nguyên n lớn nhất sao cho ;
n^200<6^300
3,tìm số nguyên dương m và n sao cho
2^m.2^n=256
_Tìm các số tự nhiên n sao cho: n2 + 16n + 2011 là 1 số chính phương
Đặt \(n^2+16n+2011=k^2\left(k\in N\right)\)
\(< =>\left(n^2+16n+64\right)+1947=k^2\)
\(< =>\left(n+8\right)^2+1947=k^2< =>k^2-\left(n+8\right)^2=1947\)
\(< =>\left(k-n-8\right)\left(k+n+8\right)=1947\)
Có \(k-n-8< k+n+8\)
\(=>\left(k-n-8\right)\left(k+n+8\right)=1.1947=3.649=11.177\)
bn tự giải tiếp nhé,đến đây dễ rồi
_bạn còn thiếu 1 trường hợp là 59 .33 nhé # CTV Hoàng Phúc
uk , tks , bn tự bổ sung ,mk k có máy tính nên k chắc chắn
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
1) Tìm số tự nhiên n sao cho 2n+5 chia hết cho 2n -1
2) Tìm số tự nhiên n sao cho 3.n+5 chia hết cho 3.n-1
3) Tìm số tự nhiên n sao cho n+5 chia hết cho n-1
Giải tóm tắt dễ hiểu nha mọi người. Cảm ơn !
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé