The minimum value of 9x2-6-6x is ...........
the minimum value of 9x^2 - 6 - 6x
The minimum value of 9x^2 - 6 - 6x = Giá trị nhỏ nhất của 9x^2 - 6 - 6x
\(A=9x^2-6-6x\)
\(=\left(3x\right)^2-2\times3x\times1+1^2-1^2-6\)
\(=\left(3x-1\right)^2-7\)
\(\left(3x-1\right)^2\ge0\)
\(\left(3x-1\right)^2-7\ge-7\)
The minimum value of 9x^2 - 6 - 6x is \(-7\) when \(x=\frac{1}{3}\)
Find the minimum value of the expression .
Answer: The minimum value is
Bài này không khó cách làm thế này:
x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4
= (x + y +1 )2 +4
Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4
Dấu "=" xảy ra khi và chỉ khi x=y=-0,5
Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.
Xong rồi đó. Có gì sai sót các bạn góp ý nhé.
x2 + y2 + 2x + 2y + 2xy + 5
= x2 + y2 + 12 + 2x + 2y + 2xy + 4
= (x + y + 1)2 + 4 \(\ge\) 4
Ta có : \(A=x^2+y^2+2x+2y+2xy+5=x^2+y^2+1^2+2xy+2.y.1+2.x.1+5-1\)
\(=\left(x+y+1\right)^2+4\ge4\)
Vậy Amin = 4
Exam number 219:12
Fill in the blank with the suitable number (Note: write decimal number with "the dot" between number part and fraction part. Example: 0.5)
Question 1:
Given .
Find the value of "" such that its degree is equal to 4.
Answer: The value of "" is
Question 2:
The value of with is
Question 3:
Given .
The degree of is
Question 4:
Given .
The degree of is
Question 5:
Given .
The value of is
Question 6:
In this figure, if the length of the line segment is an even number.
Then .
Question 7:
Given .
The value of
Question 8:
The value of with is
Question 9:
Given with .
Then the minimum of is
Question 10:
The minimum value of is
Assume that two numbers x and y satisfy: 2x + y = 6.
Find the minimum value of expression A = 4x2 + y2
\(2x+y=6\)
\(\Rightarrow y=6-2x\)
\(\text{Thế vào phương trình ta dc:}\)
\(4x^2+\left(6-2x\right)^2\)
\(=4x^2+36-24x+4x^2\)
\(=8x^2-24x+36\)
\(\Leftrightarrow4x\left(2x-6\right)+36\)
Rồi sao nữa quên ùi
ta có : \(2x+y=6\Leftrightarrow y=6-2y\)
thay vào A, ta có:
\(A=4x^2+\left(6-2x\right)^2\)
\(A=8\left(x^2-3x+2,25\right)+18\)
\(A=8\left(x-1,5\right)^2+18\)
\(\Rightarrow A\ge18\)
The sum of two positive numbers A and B is 198. Find the minimum
value of the product of A and B.
Gợi ý: Cho biết trước tổng của 2 số. Tích nhỏ nhất khi hai số đó xa nhau nhất.
Find the minimum value of A=x(x-3)
We have: \(A=x^2-3x=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
\(\Rightarrow A_{min}=-\frac{9}{4}\) at \(x=\frac{3}{2}\)
The minimum value of A =gttd cua X +gttd cua X-8
Find the minimum value of A = \(\sqrt{3x-6}-21+\sqrt{x-2}\)
Find the minimum value of the expression \(\frac{2}{-4x^2+8x-5}\)