Cho dãy số:
\(U_n=\frac{\left(7+2\sqrt{5}\right)^n-\left(7-2\sqrt{5}\right)^n}{4\sqrt{5}};n\in N;n\ge1\)
CMR: Un+2=14Un+1-29Un
Cho dãy số: \(U_n=\dfrac{\left(5+\sqrt{7}\right)^n-\left(5-\sqrt{7}\right)^n}{2\sqrt{7}}\)
Với n = 1;2;3;.....
CMCT: \(U_{n+2}=10U_n-18U_{n+1}\)
Lm như bài trc t lm cho you ý, có khó khăn j đou '-' \(U_{n+2}=10U_n-18U_{n+1}\)
<=> \(U_{n+1}=10U_n-18U_{n-1}\)
thế vào rồi rút gọn đy là ra mà
Nguyễn Huy Tú Hồng Phúc Nguyễn Akai Haruma Mysterious Person Nguyễn Nhã Hiếu ๖ۣۜĐặng♥๖ۣۜQuý Đoàn Đức Hiếu Nguyễn Huy Thắng Hoàng Ngọc Anh soyeon_Tiểubàng giải Silver bullet Phương An Ái Hân Ngô.........Help me!!
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{u_n+2},n\ge1\end{matrix}\right.\). Tính \(\lim\limits_{u_n}\)
Dễ dàng nhận thấy \(u_n\) là dãy dương
Ta sẽ chứng minh \(u_n< 2\) ; \(\forall n\)
Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (thỏa mãn)
Giả sử điều đó đúng với \(n=k\) hay \(u_k< 2\)
Ta cần chứng minh \(u_{k+1}< 2\)
Thật vậy, \(u_{k+1}=\sqrt{u_k+2}< \sqrt{2+2}=2\) (đpcm)
Do đó dãy bị chặn trên bởi 2
Lại có: \(u_{n+1}-u_u=\sqrt{u_n+2}-u_n=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{\left(u_n+1\right)\left(2-u_n\right)}{\sqrt{u_n+2}+u_n}>0\) (do \(u_n< 2\))
\(\Rightarrow u_{n+1}>u_n\Rightarrow\) dãy tăng
Dãy tăng và bị chặn trên nên có giới hạn hữu hạn. Gọi giới hạn đó là k>0
Lấy giới hạn 2 vế giả thiết:
\(\lim\left(u_{n+1}\right)=\lim\left(\sqrt{u_n+2}\right)\Leftrightarrow k=\sqrt{k+2}\)
\(\Leftrightarrow k^2-k-2=0\Rightarrow k=2\)
Vậy \(\lim\left(u_n\right)=2\)
Xét tính tăng , giảm của các dãy số \(\left(u_n\right)\) biết :
\(a,u_n=\dfrac{\left(-1\right)^n}{n+2}\)
\(b,u_n=\sqrt{n+3}-\sqrt{n}\)
Xét tính tăng , giảm của các dãy số \(\left(u_n\right)\) biết :
\(a,u_n=\dfrac{\left(-1\right)^n}{n+2}\)
\(b,u_n=\sqrt{n+3}-\sqrt{n}\)
Chứng minh: \(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)\(< \frac{1}{2}\)
Xét tính tăng , giảm của các dãy số \(\left(u_n\right)\) biết :
\(a,u_n=\dfrac{\sqrt{n+11}}{n}\)
\(b,u_n=\dfrac{4^n-1}{4^n+5}\)
Xét tính tăng , giảm của các dãy số \(\left(u_n\right)\) biết :
\(a,u_n=\dfrac{\sqrt{n+11}}{n}\)
\(b,u_n=\dfrac{4^n-1}{4^n+5}\)
cho 4 dãy số sau \(u_n=4.\sqrt{5}^n\); \(v_n=12.\left(-3\right)^n\); \(w_n=3^n-4^n\); \(a_n=\left(-1\right)^{2n+1}.4^n\). hỏi trong dãy có bnhieu CSN, đó là các CSN nào?
Trong dãy có 3 cấp số nhân:
\(u_n=4\sqrt{5}.\sqrt{5}^{n-1}\) là CSN với \(\left\{{}\begin{matrix}u_1=4\sqrt{5}\\q=\sqrt{5}\end{matrix}\right.\)
\(v_n=-36.\left(-3\right)^{n-1}\) là CSN với \(\left\{{}\begin{matrix}u_1=-36\\q=-3\end{matrix}\right.\)
\(a_n=-4.4^{n-1}\) là CSN với \(\left\{{}\begin{matrix}u_1=-4\\q=4\end{matrix}\right.\)
Tính
A=\(\left(\frac{15}{\sqrt{7}+2}+\frac{12}{\sqrt{7}-1}-\frac{8}{3-\sqrt{7}}\right)\cdot\left(3\sqrt{7}+20\right)\)
B=\(\left(9+4\sqrt{5}\right):\left(\frac{\sqrt{5}+2}{\sqrt{5}-2}\right)\)