4. Cho hình bình hành BIDK. Gọi E và F là hai điểm nằm trên cạnh DI và BK sao cho hat IBE = hat KDF . Gọi A và C lần lượt là trung điểm của BE và CF. Chứng minh rằng ABCD là hình bình hành.
Cho hình bình hành ABCD, trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE = CF. Gọi M, N lần lượt là giao điểm của AF và CE với BD.
a) Chứng minh tứ giác BEDF là hình bình hanh.
b) Chứng minh BN = DM.
c) Gọi P là điểm đối xứng với B qua A, Q là điểm đối xứng với B qua C. Chứng minh D là trung điểm của PQ.
ai giúp tui với huhu!
cho hình bình hành ABCD . Trên 2 cạnh AB và CD lần lượt lấy 2 điểm E và F sao cho AE = CF . Trên 2 cạnh AD và BC lần lượt lấy điểm H và G sao cho AH = CG .
a. Cmr EH = GF
b. Cmr tứ giác EHFG là hình bình hành
c. Gọi I là trung điểm của BD , Cmr 3 điểm E,I,F thẳng hàng
Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm H, G sao cho DH=BG a) Chứng minh: AGCH là hình bình hành. b) Gọi O là giao điểm của AC và BD. Chứng minh: G,O,H thẳng hàng c) Trên cạnh AB lấy điểm E, gọi F là giao điểm của EO với DC. Chứng minh:EGFH là hình bình hành
Cho hình bình hành ABCD . Gọi M,N lần lượt là trung điểm của AB và CD. Gọi E,F lần lượt là giao điểm của AC với DM và BN.
a) chứng minh rằng DMBN là hình bình hành
b)chứng minh rằng EMlaf đường trung bình của tâm giác AFB
c)chứng minh rằng AE=AF=FC
a,Vi ABCD la hbh(gt)
=>AB=CD;AB//CD
Ma M€AB;N€CD
=>MB//ND
Vi M la trung diem cua AB
=>MA=MB=AB/2
Vi N la trung diem cua CD
=>CN=ND=CD/2
Ma AB=CD(cmt)
=>MB=DN
Tg DMBN co:
MB//DN(cmt)
MB=ND(cmt)
=>Tg DMBN la hbh(dh)
cho hình bình hành abcd có ad = 2ab. Gọi e và f lần lượt là trung điểm của ab và cd.
a)Chứng minh tứ giác aefc là hình bình hành.
b) tứ giác aefd là hình gi? Tại sao?.
c) bd cắt af và ce lần lượt tại h, k. Chứng minh rằng dh=hk=kb.
d) Gọi o là giao điểm của ef và hk. Chứng minh h đối xứng với k qua o
a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)
mà AB=CD(Hai cạnh đối của hình bình hành ABCD)
nên AE=CF=FD=EB
Xét tứ giác AECF có
AE//CF(AB//CD, E∈AB, F∈CD)
AE=CF(cmt)
Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác AEFD có
AE//FD(AB//CD, E∈AB, F∈CD)
AE=FD(cmt)
Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)
mà H∈AF(gt)
và K∈CE(gt)
nên HF//KC và EK//AH
Xét ΔDKC có
F là trung điểm của CD(gt)
FH//DK(cmt)
Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)
⇒DH=KH(1)
Xét ΔABH có
E là trung điểm của AB(gt)
EK//BH(cmt)
Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)
⇒BK=KH(2)
Từ (1) và (2) suy ra DH=HK=KB(đpcm)
Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD
1) Chứng minh tứ giác AECF là hình bình hành
2) Chứng minh O là trung điểm của EF
1) Vì ABCD là hình bình hành nên AB//CD hay AE//CF
Xét tứ giác AECF có AE//CF, AE=CF
=> AECF là hình bình hành
2) Vì AbCDlà hình bình hành nên O là trung điểm của AC (1)
Mà AECF là hình bình hành có 2 đường chéo AC và EF cắt nhau tại O (2)
Suy ra O là trung điểm của EF
Cho hình bình hành ABCD. Gọi H và K lần lượt là hình chiếu của A và C trên đường chéo BD.
a)v Chứng minh rằng DH = BK
b) Chứng minh rằng tứ giác AHCK là hình bình hành
c) Gọi O là trung điểm của HK. Chứng minh rằng ba điểm A, O, C thẳng hàng.
nhanh 3 k miễn phí mai nhớ cổ vũ đội bóng việt nam nha
b) Xét hai tam giác vuông AHD và CKB có:
AD=BC
góc ADB=góc DBC (so le trong).
=> tam giác AHD=tam giác CKB (ch-gn)
=> BH=CK( hai cạnh tương ứng)
Lấy M trung điểm BD , nên MD=MB => MD-DH=MB-BK=> MH=MK, nên M Trung điểm HK
Vì ABCD là hình bình hành nên AC cắt BD tại trung điểm M.
Hay M là Trung điểm AC, mà M trung điểm HK.
Nên AKCH là hình bình hành.
c) AHCK là HBH =>2 đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường
Mà O là trung điểm của HK
=> O là trung điể của AC
=> A,O,C thẳng hàng
Cho hình bình hành ABCD. Trên các cạnh AB và BC của hình bình hành ABCD, lần lượt lấy các điểm E và F sao cho AE = CF. AF cắt CE tại P. Chứng minh rằng DP là tia phân giác của ADC
*AF cắt DC tại G.
-△APE có: AE//CG (ABCD là hình bình hành) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{AE}{CG}\) (hệ quả định lý Ta-let) mà \(AE=CF\left(gt\right)\) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{CF}{CG}\)
-△ADG có: CF//AD (ABCD là hình bình hành) \(\Rightarrow\dfrac{CF}{AD}=\dfrac{CG}{DG}\Rightarrow\dfrac{AD}{DG}=\dfrac{CF}{CG}=\dfrac{AP}{PG}\)
*AH//DP (H thuộc DC)
△AHG có: AH//DP (gt) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{DH}{DG}=\dfrac{AD}{DG}\Rightarrow DH=AD\)
\(\Rightarrow\)△ADH cân tại D. \(\Rightarrow\widehat{HAD}=\widehat{ADH}=\widehat{ADP}=\widehat{CDP}\)
\(\Rightarrow\)DP là tia phân giác của góc ADC
Làm giúp mình với ạ mình cần tối nay ạ