Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minaka Laala
Xem chi tiết
Harri Won
Xem chi tiết
Nguyễn Thị Hiền
30 tháng 10 2017 lúc 17:01

B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)

B = \(1+\frac{4}{\sqrt{x}-3}\)

để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)

=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên  \(\sqrt{x}-3\in\left(1;4\right)\)

\(\sqrt{x}\)\(\in\)(4;7)

\(\in\)(16;49)

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Khách vãng lai đã xóa
Hàn An Nhi
Xem chi tiết
tth_new
20 tháng 1 2019 lúc 8:11

ĐK: \(x\ge-1;x\ne3\)

\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)

Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0

Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.

Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)

Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)

Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)

Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.

toan bai kho
Xem chi tiết
như phạm
Xem chi tiết
Phương Trình Hai Ẩn
12 tháng 8 2018 lúc 15:59

Để A thuộc Z

=> A^2 thuộc Z

=> x-3+4/x-3 = 1+4/x-3 thuộc z

=> x-3 thuộc ước của 4 Giải ra

như phạm
Xem chi tiết
minhduc
12 tháng 8 2018 lúc 17:02

\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\Leftrightarrow A^2=\frac{x+1}{x-3}.\)

                               \(\Leftrightarrow A^2=\frac{x-3+4}{x-3}=\frac{x-3}{x-3}+\frac{4}{x-3}=1+\frac{4}{x-3}\)

Để \(A\in Z\Leftrightarrow1+\frac{4}{x-3}\in Z\).

Mà \(1\in Z\)

\(\Leftrightarrow\frac{4}{x-3}\in Z\)

\(\Leftrightarrow\left(x-3\right)\inƯ_4=\left\{\pm2;\pm4;\pm1\right\}\)

Ta có bảng sau :

  x-3   4   -4    2  -2   1  -1
   x     7    -1     5     1     4     2
Trần Nghiên Hy
Xem chi tiết
Isolde Moria
13 tháng 8 2016 lúc 18:12

\(B=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

B là số dương

<=> \(\frac{4}{\sqrt{x}-3}\) dương

 

<=> \(\sqrt{x}-3\inƯ_4\)

Mà \(\sqrt{x}-3\ge0\)

<=> \(\sqrt{x}-3\in\left\{1;2;4\right\}\)

<=> \(\sqrt{x}\in\left\{4;5;7\right\}\)

<=> \(x\in\left\{16;25;49\right\}\)

Vậy \(x\in\left\{16;25;49\right\}\)

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 18:10

Ta có : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) (điều kiện x khác 9 và x >=0)

Để B là số nguyên dương thì \(\sqrt{x}-3\) thuộc tập hợp ước dương của 4

\(\Rightarrow\sqrt{x}-3\in\left\{1;2;4\right\}\)

Tới đây bạn liệt kê ra nhé :) 

Bùi Ngọc Trường
Xem chi tiết
Mei Shine
18 tháng 12 2023 lúc 20:19

Để A có giá trị là một số nguyên thì:

\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow4⋮\left(\sqrt{x}-3\right)\)

Vì \(x\in Z\) nên \(\left(\sqrt{x}-3\right)\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)

Ta có bảng sau:

\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1
x 16 4 25 1 49 (loại)

Vậy ....

 

Võ Ngọc Phương
18 tháng 12 2023 lúc 20:25

Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}=\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để A có giá trị là một số nguyên khi:

\(4⋮\sqrt{x}-3\) hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Do đó:

\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=-1+3=2\Rightarrow x=4\)

\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=1+3=4\Rightarrow x=16\)

\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=-2+3=1\Rightarrow x=1\)

\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=2+3=5\Rightarrow x=25\)

\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-4+3=-1\)  ( loại )

\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=4+3=7\Rightarrow x=49\)

Vậy để A là một số nguyên khi \(x\in\left\{4;16;1;25;49\right\}\)

Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 11:40

a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)

Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)

Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành

\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)

\(\Rightarrow t=5t-10\)

\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)

\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)

\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)

Vậy \(x=\frac{9}{4}\)