Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Nguyễn
Xem chi tiết
huynh thanh tuyen
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
Hoàng Hà
Xem chi tiết
Nguyễn Duy Khang
21 tháng 2 2021 lúc 16:36

a) Xét tứ giác MAOB có:

\(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\) (MA,MB là tiếp tuyến)

=> Tứ giác MAOB nội tiếp (dhnb)

b) Tam giác CAD vuông tại C (tiếp tuyến tại C) và có BC là đường cao (góc ABC nội tiếp chắn nửa đường tròn)

\(\Rightarrow AC^2=AB.AD\) (hệ thức lượng)    (1)

Có: \(AC^2=\left(2R\right)^2=4R^2\)    (2) 

Từ (1) và (2) suy ra \(AB.AD=4R^2\)

 

Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 22:45

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có

ΔABC nội tiếp đường tròn(A,C,B∈(O))

AC là đường kính(gt)

Do đó: ΔABC vuông tại B(Định lí)

⇔CB⊥AB tại B

⇔CB⊥AD tại B

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại C có CB là đường cao ứng với cạnh huyền AD, ta được:

\(AB\cdot AD=AC^2\)

\(\Leftrightarrow AB\cdot AC=\left(2\cdot R\right)^2=4R^2\)(đpcm)

vũ thị thụy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2022 lúc 18:19

Xét tứ giác MAOB có \(\widehat{OAM}+\widehat{OBM}=180^0\)

nên MAOB là tứ giác nội tiếp

Nguyệt Quách
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 8:42

loading...

Yusei Fudo
Xem chi tiết
Đăng
Xem chi tiết
Bùi Đức Hải
Xem chi tiết
Tuyet
28 tháng 1 2023 lúc 18:18

loading... loading...  

  Bạn tham khảo cách làm này của mình nhé

dieuh4488
Xem chi tiết