Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phúc Thuận
Xem chi tiết
Lê Phúc Thuận
Xem chi tiết
Trịnh Thảo	Trang
Xem chi tiết
~♤♡~Ayun~♡♤~
Xem chi tiết
phạm văn tuấn
Xem chi tiết
Nhok_baobinh
18 tháng 1 2018 lúc 22:15

Đặt \(p=n^2-2n\)

\(\Rightarrow p=n\left(n-2\right)\)

Để \(p\in P\)thì: 

\(\orbr{\begin{cases}n=1;n-2\in P\\n\in P;n-2=1\end{cases}}\)

Lại có: \(n>n-2\)

\(\Rightarrow n-2=1\)

\(\Rightarrow n=3\)( TM \(n\in Z\))

Thay \(n=3\) vào \(p\) ta được \(p=3\) ( TM \(p\in P\))

Vậy để \(p\in P\)thì \(n=3\)

P/S: bài mk làm còn nhiều sai sót mong bạn thông cảm nha

Không Tên
18 tháng 1 2018 lúc 21:42

\(n^2-2n\)\(=n\left(n-2\right)\)

Để  \(n^2-2n\)là nguyên tố thì 

  \(\orbr{\begin{cases}n=1\\n-2=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=1\\n=3\end{cases}}\)

Vì  n  là nguyên tố nên    \(n=3\)

phạm văn tuấn
18 tháng 1 2018 lúc 21:56

n^2-2n=n.n-2.n=n(n-2)

để n^2-2n là nguyên tố thì (n-2,n):(2,1);(1,2);(-1,-2);(-2,-1)

+)nếu n=1,n-2=2 =>n=3 hay 1

+)nếun=2,n-2=1 =>n=3 hay n=2

+)nếun=-1,n-2=-2=>n=0 hay n=-1

+)nếu=-2,n-2=-1=>n=1 hay n=-2

Tiến Nguyễn Minh
Xem chi tiết
Thanh Tùng DZ
15 tháng 3 2020 lúc 21:09

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

Khách vãng lai đã xóa
Tiến Nguyễn Minh
24 tháng 3 2020 lúc 20:26

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

Khách vãng lai đã xóa
Tiến Nguyễn Minh
26 tháng 3 2020 lúc 20:40

Đặt \(p^{2m}+q^{2n}=a^2\)\(\left(a\in Z\right)\)(1)

Nếu p,q lẻ suy ra \(p^{2m}\equiv q^{2n}\equiv1\)(mod 4)

\(\Rightarrow a^2\equiv2\)(mod 4), vô lý.

Suy ra trong p,q có 1 số = 2

Không mất tính tổng quát, giả sử p=2

\(\left(1\right)\Leftrightarrow2^{2m}+q^{2n}=a^2\)(2)

Nếu q khác 3 \(\Rightarrow\)q không chia hết cho 3\(\Rightarrow\)\(q^2\equiv1\)(mod 3)\(\Rightarrow\)\(q^{2n}\equiv1\)(mod 3)

Mà \(2^{2m}=4^m\equiv1^m\equiv1\)(mod 3)

Suy ra \(2^{2m}+q^{2n}\equiv2\)(mod 3)\(\Rightarrow\)vô lý.

Do đó q=3.

(2) trở thành \(2^{2m}+3^{2n}=a^2\)\(\Leftrightarrow\)\(3^{2n}=\left(a-2^m\right)\left(a+2^m\right)\)

\(\Rightarrow\)\(a-2^m\)và \(a+2^m\)là lũy thừa của 3.

Mà 2 số trên không cùng chia hết cho 3 (vì hiệu của chúng không chia hết cho 3)

\(\Rightarrow\)Có 1 số không chia hết cho 3\(\Rightarrow\)Có 1 số bằng 1 mà \(a-2^m< a+2^m\)\(\Rightarrow\hept{\begin{cases}a-2^m=1\\a+2^m=3^{2n}\end{cases}}\Rightarrow2\cdot2^m=3^{2n}-1\Rightarrow2^{m+1}=\left(3^n-1\right)\left(3^n+1\right)\)

\(\Rightarrow\)\(3^n-1\)và \(3^n+1\)đều là lũy thừa của 2.

Mà 2 số này không cùng chia hết cho 4 (do hiệu của chúng = 2 không chia hết cho 4).

\(\Rightarrow\)Có 1 số không chia hết cho 4.

Mà 2 số cùng tính chẵn lẻ\(\Rightarrow\)2 số cùng chẵn\(\Rightarrow\)Có 1 số = 2.

\(\Rightarrow\hept{\begin{cases}3^n-1=2\\3^n+1=2m\end{cases}}\)(do \(3^n-1< 3^n+1\))\(\Rightarrow\hept{\begin{cases}n=1\\m=2\end{cases}\Rightarrow\hept{\begin{cases}p=2\\q=3\end{cases}.}}\)

P/S: Bài dài viết lại mỏi quá.

Khách vãng lai đã xóa
N.Đ.Hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 22:09

a: \(\left\{{}\begin{matrix}n+2⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: với mọi số nguyên n thì n+2 và n+3 là hai số nguyên tố cùng nhau

Phạm Minh Huyền
Xem chi tiết
pham phan huy tuan
29 tháng 10 2017 lúc 21:34

DO P LÀ SỐ NGUYÊN TỐ :

(+) XÉT P=2 => P+2=2+2=4 VÀ P+10=2+10=12 (ĐỀU LÀ HỢP SỐ )( LOẠI)

(+) XÉT P=3 => P+2=3+2=5 VÀ P+10 = 3+10 13 ( ĐỀU LÀ SỐ NGUYÊN TỐ ) ( CHỌN)

(+) NẾU P>3 => P KHÔNG CHIA HẾT CHO 3 => P CÓ DẠNG : 3K+1 HOẶC 3K+2

(+) XÉT P=3K+1 => P+2= 3K+1+2 = 3K+3 CHIA HẾT CHO 3 VÀ P+2>3 => P+2 LÀ HỢP SỐ (LOẠI)

(+) XÉT P=3K+2 => P+10 = 3K+2+10 =3K+12 CHIA HẾT CHO 3 VÀ P+10> 3 => P+10 LÀ HỢP SỐ (LOẠI)

                                          VẬY P=3

-Duongg Lee (Dii)
Xem chi tiết
Lạnh Lùng Boy
11 tháng 1 2019 lúc 23:09

a) Vì: m là số nguyên tố 

=> m>1

=> 7m>7 và chia hết cho 7 (do 7 chia hết cho 7)

=> Là hợp số 

=> Vô lí

Vậy ko có SNT m nào t/m.

b) Vì: n thuộc N hay n là SNT cx ok nhá

=> n-2<n^2+4

Vì SNT đc phân tích thành 1 và chính nó

=> n-2=1

=> n=3

c) Giải thích tương tự câu b

=> Tìm đc n=2

=> m=1.7=7

d) Phân tích thành nhân tử r lm giống như câu b,c thoy