cho tam giác ABC có AB=5cm,AC=7cm,đường trung tuyến AM.Lấy điểm E thuộc cạnh AB,điểm F thuộc cạnh AC sao cho AE=AF=3cm.Gọi I là giao điểm của EF và AM.CMR:I là trung điểm của AM
mình cũng đang cần bài này nè ta lét phải ko?
help me cần gấp
bài 1 : cho tam giác abc có AB=10cm AC=15cm BC=20cm điểm M thuộc cạnh AB , điểm N thuộc cạnh AC sao cho BM=AN và MN // BC tính BM và MN
bài 2 cho tam giác ABC có AB=5cm AC=7cm đường trung tuyến AM điểm E thuôc AB sao co AE=2cm. gọi I là trung điểm của AM. F là trung điểm của EI và AC. tính AF
giúp mình nha thanks
mấy bài thuộc dạng đl talet
Cho ABC có AB AC = , lấy M là trung điểm của BC . a) Chứng minh: = ABM ACM b) Chứng minh: AM BC ⊥ c) Lấy điểm E thuộc cạnh AB , lấy điểm F thuộc cạnh AC sao cho AE AF = . Gọi I là giao điểm của EF và AM . Chứng minh: = AIE AIF và EF BC // .
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABC có
AE/AB=AF/AC
Do đó: EF//BC
Cho tam giác ABC. Trên cạnh AB và AC lần lượt lấy E và F sao cho AE = AF. AM là trung tuyến và I là giao điểm của EF và MA. Chứng minh IE/IF = AC / AB
-Qua E,F kẻ các đường thẳng song song với BC cắt AM lần lượt tại P,Q.
-Xét △PIF có: PF//EQ (gt).
\(\Rightarrow\dfrac{EQ}{PF}=\dfrac{IE}{IF}\) (hệ quả định lí Ta-let).
-Xét △ABM có: EQ//BM (gt).
\(\Rightarrow\dfrac{EQ}{BM}=\dfrac{AE}{AB}\) (hệ quả định lí Ta-let). (1)
-Xét △ACM có: PF//CM (gt).
\(\Rightarrow\dfrac{PF}{CM}=\dfrac{AF}{AC}\) (hệ quả định lí Ta-let).
Mà \(BM=CM\) (M là trung điểm BC), \(AE=AF\) (gt)
\(\Rightarrow\dfrac{PF}{BM}=\dfrac{AE}{AC}\) (2)
-Từ (1), (2) suy ra:
\(\dfrac{\dfrac{EQ}{BM}}{\dfrac{PF}{BM}}\)=\(\dfrac{\dfrac{AE}{AB}}{\dfrac{AE}{AC}}\)
\(\Rightarrow\) \(\dfrac{EQ}{PF}=\dfrac{AC}{AB}\) mà \(\dfrac{EQ}{PF}=\dfrac{IE}{IF}\left(cmt\right)\)
Nên \(\dfrac{IE}{IF}=\dfrac{AC}{AB}\)
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC
2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF
3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao điểm EI và BC. CMR: MK//EF
4) Cho tam giác ABC, AB=10, AC=15, 1 đường thẳng đi qua điểm M thuộc cạnh AB và song song với BC cắt AC ở N sao cho AN=BM. Tính độ dài AM sao cho AM=BN
5) Cho tam giác ABC có AB<AC, đường phân giác AD, lấy I thuộc BC sao cho BI=2 IC. Qua I kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. CM BK= 2 CE
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
A, IP/OA=IB/OB
B, IP/IS=IB/ID*OD/OB
C, IP/IS=IQ/IR
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Cho tam giác ABC có AB=5 cm, AC=7 cm, trung tuyến AM.Lấy E trên AC sao cho AC= 3 cm. Gọi I là trung điểm AM. EI giao BC tại F. Tính AF.
Cho tam giác ABC có AB=10cm,AC=16 cm. M là trung điểm của cạnh BC. Lấy điểm F thuộc cạnh AC và điểm E thuộc cạnh AB sao cho AF=2AE, EF cắt AM tại G. tính tỉ số GF/GE
Từ B và C kẻ các đường thẳng song song với EF lần lượt cắt đường thẳng AM tại K và H. Sử dụng tỉ số đồng dạn của hai tam giác suy ra được GF/GE=AB/AC=5/8
Từ B và C lần lượt kẻ đường thẳng // với EF cắt đường thẳng AM tại K và H. Sử dụng tỉ số đồng dạng ta có GF/GE= 2AB/AC