Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Vũ
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi

Mai Thị Thúy
Xem chi tiết
Hùng Hoàng
Xem chi tiết
:vvv
Xem chi tiết
Lê Thị Thục Hiền
18 tháng 6 2021 lúc 21:30

Đk:\(x\ge-1\)

Đặt \(\left(a,b,c\right)=\left(x;\sqrt{x+1};\sqrt{2}\right)\)

Pt tt: \(a^3+b^3+c^3=\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(\Leftrightarrow0=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(\Leftrightarrow3\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\a+c=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x+1}=0\\\sqrt{x+1}+\sqrt{2}=0\left(vn\right)\\x+\sqrt{2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=-x\\x=-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)\(\Rightarrow\)\(\sqrt{x+1}=-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le0\\x+1=x^2\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{5}}{2}\) (tm)

Vậy...

Hồ Băng Khanh
Xem chi tiết
Thành Vinh Lê
24 tháng 9 2018 lúc 17:35

Sao lắm dấu bằng thế

Bùi Hoàng Hải
26 tháng 9 2018 lúc 22:00

hack não người xem

Trần Hải Linh
20 tháng 1 2019 lúc 21:52

QUÁ TẢI, 

Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 22:24

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

Mai Thị Thúy
Xem chi tiết
Hồng Phúc
1 tháng 8 2021 lúc 9:05

a, ĐK: \(x\ge1\)

Đặt \(\sqrt{5x-1}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)

\(pt\Leftrightarrow\left(a+b\right)\left(\dfrac{a^2+b^2}{2}-ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=2\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a-b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=b+2\end{matrix}\right.\)

TH1: \(a=b\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}\Leftrightarrow x=0\left(l\right)\)

TH2: \(a=b+2\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}+2\)

\(\Leftrightarrow5x-1=x-1+4+4\sqrt{x-1}\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}=0\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}+1=1\)

\(\Leftrightarrow\left(2\sqrt{x-1}-1\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x-1}-1=1\\2\sqrt{x-1}-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Hùng Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2020 lúc 19:39

ĐKXĐ: \(-4\le x\le1\)

Đặt \(\sqrt{x+4}-\sqrt{1-x}=t\)

\(\Rightarrow t^2=5-2\sqrt{\left(x+4\right)\left(1-x\right)}\Rightarrow\sqrt{\left(x+4\right)\left(1-x\right)}=\frac{5-t^2}{2}\)

Pt trở thành:

\(t\left(1+\frac{5-t^2}{2}\right)=3\Leftrightarrow t\left(7-t^2\right)=6\)

\(\Leftrightarrow t^3-7t+6=0\Leftrightarrow\left(t+3\right)\left(t-1\right)\left(t-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=1\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x+4}-\sqrt{1-x}=-3\\\sqrt{x+4}-\sqrt{1-x}=1\\\sqrt{x+4}-\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}+3=\sqrt{1-x}\left(vn\right)\\\sqrt{x+4}=1+\sqrt{1-x}\\\sqrt{x+4}=2+\sqrt{1-x}\end{matrix}\right.\) (1 vô nghiệm do \(VT\ge3;VP\le\sqrt{5}< 3\))

\(\Leftrightarrow\left[{}\begin{matrix}x+4=2-x+2\sqrt{1-x}\\x+4=5-x+4\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{1-x}\left(x\ge-1\right)\\2x-1=4\sqrt{1-x}\left(x\ge\frac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=1-x\\4x^2-4x+1=16-16x\end{matrix}\right.\) \(\Leftrightarrow...\)