Cho tam giác ABC với ba đường phân giác AD; BE; CF.
a) Tính FA/FB . EC/EA . DB/DC ?
b) Chứng minh:
1/AD + 1/BE + 1/CF > 1/BC + 1/ CA + 1/AB
Giúp mk với nha! Thanks các bạn nhìu nhìu.
Nhớ vẽ hình và ghi GT, KL nha
Cho tam giác ABC. Từ C kẻ đường thẳng song song với đường phân giác AD của tam giác ABC, đường thẳng này cắt đường thẳng BA tại E
*Vẽ hình hộ mình đc rồi.Cảm ơn
Cho tam giác abc nhon với các đường cao AD,BE,CF.chứng minh a. AFDC là tứ giác nội tiếp b.H là giao điểm của ba đường phân giác tam giac DEF?
a: Xét tứ giác AFDC có
\(\widehat{AFC}=\widehat{ADC}=90^0\)
Do đó: AFDC là tứ giác nội tiếp
b: \(\widehat{EFC}=\widehat{EAH}=\widehat{CAD}\)
\(\widehat{DFC}=\widehat{EBC}\)
mà \(\widehat{CAD}=\widehat{EBC}\)
nên \(\widehat{EFC}=\widehat{DFC}\)
hay FH là tia phân giác của góc EFD(1)
\(\widehat{FEH}=\widehat{BAD}\)
\(\widehat{DEH}=\widehat{FCB}\)
mà \(\widehat{BAD}=\widehat{FCB}\)
nên \(\widehat{FEH}=\widehat{DEH}\)
hay EH là tia phân giác của góc FED(2)
Từ (1) và (2) suy ra H là giao của các đường phân giác của ΔDEF
cho tam giác abc có ad là đường phân giác của góc a d thuộc bc từ c kẻ đường song song với ad cắt ba tại m gọi n là hình chiếu của a lên đường thẩng cm cmr tam giác amc cân cmr an là tia phân giác ngoài của đỉnh a
Cho hình tam giác abc với ba đường phân giác ad,be,cf.Chứng minh
a) DB/DC.EC/EA.FA/FB=1
b)1/AD+1/BE+1/CF>1/BC+1/CA+1/AB
a) Ta có: \(\dfrac{DB}{DC}\cdot\dfrac{EC}{EA}\cdot\dfrac{FA}{FB}\)
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)
=1
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (o).Các đường cao AD,BE và CF của tam giác ABC cắt nhau tại H
a,chứng minh BCEF và CDHE là các tứ giác nội tiếp
b,chứng minh EB là tia phân giác của góc FED và tam giác BFE đồng dạng với tam giác DHE
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
Cho tam giác ABC vuông tại A, kẻ đường cao AH và trung tuyến AM. đường phân giác góc A, cắt đường trung trực BC tại D. Từ D kẻ DE vuông góc với BA và DF vuông góc với AC.
a, CMR: AD là phân giác góc HAM
b, 3 điểm E, M, F thẳng hàng
c, Tam giác ABC là tam giác vuông cân
Cho tam giác ABC vuông tại A, kẻ đường cao AH và trung tuyến AM. đường phân giác góc A, cắt đường trung trực BC tại D. Từ D kẻ DE vuông góc với BA và DF vuông góc với AC.
a, CMR: AD là phân giác góc HAM
b, 3 điểm E, M, F thẳng hàng
c, Tam giác ABC là tam giác vuông cân
Cho tam giác abc nhon với các đường cao AD,BE,CF.chứng minh
a. AFDC là tứ giác nội tiếp
b.H là giao điểm của ba đường phân giác tam giac DEF
a. Xét tứ giác AFDC. Có
góc BFC= góc BEC=90( Giả thiết)
mà BFC và BEC là hai goc kề một cạnh và cùng nhìn cạnh AC
=> Tứ giác AFDC nội tiếp( quĩ tích cung chứa góc)
Cho tam giác ABC cân tại A, đường phân giác AD cắt đường trung trực của AC tại O. Chứng minh O cách đều ba đỉnh của tam giác ABC.
vẽ hình ta thấy 0 là trục tâm vì là giao điiẻm của 2 đường cao nên o cách đều 3 đỉnh
Cho tam giác ABC có góc A=120độ phân giác AD kẻ DE vuông góc với AB,DE vuông góc với AC trên các đoạn thẳng BE và CF đặt EK=FI
a,CM tam giác DEF là tam giác đều
b ,CM tam giác DIK là tam giác cân
c,Từ C kẻ đường thẳng song song vs AD cắt BA ở M.CM tam giác AMC là tam giác đều
d,Tính độ dài đoạn thẳng AD theo CM=m,CF=n
a, xét hai tam giác AED và AFD có:
góc AFD = góc AED (góc vuông)
góc EAD= góc FAD (AD là tia phân giác của góc A)
AD cạnh chung
nên tam giác vuông AED = tam giác vuông AFD ( cạnh huyền góc nhọn)
từ giả thiết trên
=> DE=DF
=> tam giác DEF là tam giác cân
Mà:
D là góc đối của góc A
DA là tia phân giác của A=120 độ
=> D= 60 độ Áp dụng tính chất tổng ba góc trong một tam giác ta có 180‐ 60 = 120 độ
DEF là tam giác cân nên góc E= góc F nên 120/2= 60 độ
Vậy góc D= E= F= 60 độ hay DEF là tam giác đều
b. Tam giác EAD=tam giác FAD(ch‐gn)
=>AE=AF
Mà KE=FI
=> AE+EK=AF+FI
=> AK=AI
Xét tam giác AKD và tam giác AID
AK=AI
KAD=IAK
AD chung
=> tam giác AKD= tam giác AID(cgc)
=> DK=DI
=> ΔDIK cân
=> đcpcm
c, Có:
^BAC + ^MAC = 180°
=> ^MAC = 180° - ^BAC
=> ^MAC = 180° - 120°
=> ^MAC = 60°
Lại có:
AD // MC
=> ^MCA = ^CAD = 60°
=> △ACM đều