Tim x, y thuoc Z biet : | x-2| + (x-y+1)^2 =0
tim x,y thuoc z biet (x-2).(y+12)<0
tim x,y thuoc z biet (x-2).(y+12)<0
Ta có: (x-2)(y+12)<0
nên x-2;y+12 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x-2>0\\y+12< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\y< -12\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2< 0\\y+12>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\y>-12\end{matrix}\right.\)
tim x,y,z thuoc Z biet /2x-4/+/y+2/+/2x+3y-z/=0
tim x,y,z thuoc z biet /x/+/y/+/z/=0
VÌ \(\left|x\right|\ge0;\left|y\right|\ge0;\left|z\right|\ge0\)NÊN ĐỂ\(\left|x\right|+\left|y\right|+\left|z\right|=0\)\(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\\\left|z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}}\)
cho P =|x|.(y-1).Tim x,y thuoc Z biet P<0
tim cac so x,y,z thuoc Q biet rang (x+y):(5-z):(y+z):(y+9)=3:1:2:5
Ta có:(x+y):(5-z):(y+z):(y+9)=3:1:2:5
=> 5-z=1=>z=4.
y+9=5=>y=-4.
x+y=3=>x-4=3(do y=-4)=>x=7.
Vậy x=7,y=-4,z=4.
tim x,y thuoc Z biet x^2+6x=y^2
Ta có x^2+6x=y^2
x^2+6x+9 =y^2+9
(x+3)^2+9=y^2
y^2-(x+3)^2 =9
(y+x+3)(y-x-3)=9
Lập bảng xét các trường hợp ra
Ta có:\(x^2+6x=y^2\)
\(\Leftrightarrow x^2+6x+9=y^2+9\)
\(\Leftrightarrow\left(x+3\right)^2=y^2+9\)
Do VT là số chính phương nên VP là số chính phương
Đặt \(y^2+9=k^2\left(k\in Z\right)\)
Khi đó ta có:
\(y^2-k^2=-9\)
\(\Leftrightarrow\left(y-k\right)\left(y+k\right)=-9=\left(-3\right)\cdot3=3\cdot\left(-3\right)=\left(-1\right)\cdot9=\left(-9\right)\cdot1\)
Với \(\left(y-k\right)\left(y+k\right)=\left(-3\right)\cdot3\)
\(\Rightarrow\hept{\begin{cases}y-k=-3\\y+k=3\end{cases}}\)
\(\Rightarrow2y=0\)
\(\Rightarrow y=0\)
Thay y=0 vào ta được x=0 hoặc x=6
Làm tương tự các trường hợp còn lại ta thu được các nghiệm (x;y) của pt là:
\(\left(-8;-4\right);\left(-8;4\right);\left(2;4\right);\left(2;-4\right);\left(-6;0\right);\left(0;0\right)\)
\(x^2+6x=y^2\)
\(\Rightarrow x^2+6x+9-y^2=9\)
\(\Rightarrow \left(x+3\right)^{2\:}-y^2=9\)
\(\Rightarrow\left(x+3+y\right)\left(x+3-y\right)=9\)
\(\Rightarrow TH1:\)\(\hept{\begin{cases}x+3+y=1\\x+3-y=9\end{cases}\Rightarrow2y=-8\Rightarrow y=-4\Rightarrow x=2}\)
......................
tim x y thuoc z biet (x+y).2=xy
=>2 x+2y =xy
=>xy -2x-2y=0
=>x(y-2)-2(y-2)=4
=>(x-2)(y-2)=4
x-2 | 1 | 4 | -1 | -4 | 2 | -2 |
y-2 | 4 | 1 | -4 | -1 | 2 | -2 |
x | 3 | 6 | 1 | -2 | 4 | 0 |
y | 6 | 3 | 2 | 1 | 4 | 0 |
K NHA
tim x,y thuoc Z biet xy=2(x+y)