cmr 2 số n+3 và 2n+4(n thuộc N) nguyên tố cùng nhau
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
CMR: với mọi n thuộc N thì hai số 2n+3 và 3m+4 là hai số nguyên tố cùng nhau
Không biết thế này có đúng không nhưng mình vẫn muốn hỏi
Gọi d là WCLN(2n+3, 3m+4); n thuộc N
Ta có: 2n+3 chia hết cho d; 3m+4 chia hết cho d
3(2n+3) chia hết cho d; 2(3m+4) chia hết cho d
nên (6m+9-6n+8)
=> d chia hết cho 1
=> d=1
cmr mọi n thuộc N* thì 2n+ và n(n+) là 2 số nguyên tố cùng nhau
Cho n thuộc N,CMR : 2n + 1 và 3n + 1 là 2 số nguyên tố cùng nhau .
Giải:
Gọi \(d=UCLN\left(2n+1;3n+1\right)\)
Ta có: \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)
\(3n+1⋮d\Rightarrow2\left(3n+1\right)⋮d\Rightarrow6n+2⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(2n+1;3n+1\right)=1\)
\(\Rightarrow2n+1\) và 3n + 1 là 2 số nguyên tố cùng nhau
Vậy...
CMR 2n+1 và 3n+1 (n thuộc N) là 2 số nguyên tố cùng nhau
Mik ko bết làm bạn vào gợi ý dưới đây:vào câu hỏi tương tự
^_^&>_<
Gọi 2 số tự nhiên liên tiếp là a;a+1 ( a thuộc N )
Gọi ƯCLN của a và a+1 là d ( d thuộc N sao )
=> a và a+1 đều chia hết cho d
=> a+1 -a chia hết cho d hay 1 chia hết cho d
=> d=1 ( vì d thuộc N sao )
=> ƯCLN của a và a+1 là 1
=> a và a+1 là 2 số nguyên tố cùng nhau
=> ĐPCM
a)tìm ƯC(2n+1,2n+3) với n thuộc N*
b)CMR 2n+1,2n+3 là 2 số nguyên tố cùng nhau với n thuộc N
Gọi \(d=ƯCLN\left(2n+1;2n+3\right)\)
\(\Rightarrow2n+1⋮d;2n+3⋮d\)
\(\Rightarrow2n+3-2n-1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=2\)
Mà \(2n+1;2n+3\) là các số lẻ nên \(d=1\)
=> đpcm
A.n + 1 và 4n + 3 là nguyên tố cùng nhau n thuộc N
B.2n + 3 và 3n + 4 nguyên tố cùng nhau n thuộc N
A/ Đặt ƯCLN(n+1;4n+3) = d [ d thuộc N]
=> n+1 chia hết cho d
4n+3 chia hết cho d
=> 4n+4chia hết cho d [( n+1) x 4]
4n+3 chia hết cho d
=> (4n+4) - (4n+3) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N => d=1 => ƯCLN( n+1; 4n+3) = 1
=> n+ 1 và 4n+ 3 nguyên tố cùng nhau
Vậy .........................................
B/ Đặt ƯCLN (2n +3; 3n+ 4)= d [d thuộc N]
=> 2n + 3 chia hết cho d
3n+4 chia hết cho d
=> 6n+ 9 chia hết cho d [(2n+3) x 3]
6n+ 8 chia hết cho d [(3n+4) x 2]
=> (6n+9) - (6n+8) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N => d=1 => ƯCLN(2n+3; 3n+4)=1
=> 2n+3 và 3n+4 nguyên tố cùng nhau
Vậy........................................................... Bye nha ! (^_^)
CMR với mọi só tự nhiên n thì n^4+3.n^2+1 và n^3+2n là 2 số nguyên tố cùng nhau
cmr với mọi x thuộc N* các cặp số sau là các cặp số nguyên tố cùng nhau
n và n+1
2n và 2n+2