Cho các số thực m, n, p thoả mãn:
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức S = m + n + p.
ai nhanh nhất cho like
Cho các số thực x; y thõa mãn x≥0; y≥0 và x+y=1. Giá trị lớn nhất M , giá trị nhỏ nhất m của biểu thức S = ( 4 x 2 + 3 y ) ( 4 y 2 + 3 x ) + 25 x y là:
A. M = 25 2 ; m = 191 16 .
B. M = 12 ; m = 191 16 .
C. M = 25 2 ; m = 12 .
D. M = 25 2 ; m = 0 .
Do x+ y= 1 nên
S = 16 x 2 y 2 + 12 ( x + y ) ( x 2 - x y + y 2 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) 2 - 3 x y + 34 x y , d o x + y = 1 = 16 x 2 y 2 - 2 x y + 12
Đặt t= xy . Do x≥ 0 ; y≥0 nên
0 ≤ x y ≤ ( x + y ) 2 4 = 1 4 ⇒ t ∈ 0 ; 1 4
Xét hàm số f(t) = 16t2- 2t + 12 trên [0 ; 1/4].
Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16 .
Bảng biến thiên
Từ bảng biến thiên ta có:
m i n 0 ; 1 4 f ( t ) = f ( 1 16 ) = 191 16 ; m a x 0 ; 1 4 f ( t ) = f ( 1 4 ) = 25 2
Vậy giá trị lớn nhất của S là 25/2 đạt được khi
x + y = 1 x y = 1 4 ⇔ x = 1 2 y = 1 2
giá trị nhỏ nhất của S là 191/ 16 đạt được khi
Chọn A.
Cho số phức z thoả mãn z . z = 1 . Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = | z 2 + z 3 | + | 1 - z + z 2 | . Tính giá trị của biểu thức T = M 4 m 2 + 1 .
A. 13 12
B. 1 4
C. 3 13
D. 3 4
Cho số phức z thoả mãn z - 3 - 4 i = 5 . Gọi M và m là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = z + 2 2 - z - i 2 . Tính môđun của số phức w = M + m i
Cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ac=7 . Gọi m là giá trị nhỏ nhất của biểu thức \(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
a) Biết m đạt giá trị nhỏ nhất khi (a;b;c)=(m;n;p). Tính giá trị của biểu thức P=2p+9n+1945m
b)Biết m đạt gái tị nhỏ nhất thì a=(m/n).c , trong đó m,n là các số nguyên dương và phân số m/n tối giản . Tính giá tị biểu thức S=2m+5n
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
Cho các số thực x, y thoả mãn x2+y2=5 Tìm Giá Trị Lớn Nhất Của Biểu Thức P= x+2y
\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)
\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)
\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)
cho hai số a, b thoả mãn a^2+b^2=1. tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A=a^6+b^6
Ta có
A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)
= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)
Ta lại có
1 = a2 + b2 \(\ge\)2ab
\(\Rightarrow ab\le\frac{1}{2}\)(2)
Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)
Đạt được khi a2 = b2 = 0,5
Giá trị lớn nhất không có
Cho hai số a và b thay đổi thoả mãn a+b=1. Tìm giá trị nhỏ nhất của biểu thức M=a3+b3+ab
Nhanh nhất mình tích cho nhé !!
Ta có a3+b3=(a+b)(a2−ab+b2)=a2−ab+b2a3+b3=(a+b)(a2−ab+b2)=a2−ab+b2 ( vì a+b=1)
Lại có 2(a−b)2≥0⇔2a2−4ab+2b2≥0⇔4a2−4ab+4b2≥2a2+2b2⇔4(a2−ab+b2)≥2(a2+b2)≥(a+b)2=1⇔4(a2−ab+b2)≥1⇔a2−ab+b2≥14⇒a3+b3≥142(a−b)2≥0⇔2a2−4ab+2b2≥0⇔4a2−4ab+4b2≥2a2+2b2⇔4(a2−ab+b2)≥2(a2+b2)≥(a+b)2=1⇔4(a2−ab+b2)≥1⇔a2−ab+b2≥14⇒a3+b3≥14
Vậy Min M=14⇔a=b=12
Ta có : M = a3 + b3 + ab
= ( a + b ) ( a2 - ab + b2 ) + ab = a2 + b2
a + b = 1 \(\Rightarrow\)a2 + 2ab + b2 = 1 ( 1 )
mặt khác : ( a - b )2 \(\ge\)0 \(\Rightarrow\)a2 - 2ab + b2 \(\ge\)0 ( 2 )
Cộng ( 1 ) với ( 2 ), ta được 2 ( x2 + y2 ) \(\ge\)1 \(\Rightarrow\)( x2 + y2 ) \(\ge\)\(\frac{1}{2}\)
\(\Rightarrow\)giá trị nhỏ nhất của M = \(\frac{1}{2}\) \(\Leftrightarrow\)x = y = \(\frac{1}{2}\)
Phan Việt Anh bạn làm đúng đề k vậy
a^3+b^3+ab mà bạn
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho các số thực dương x, y thoả mãn 2 x + y = 5 4 . Tìm giá trị nhỏ nhất P min của biểu thức P = 2 x + 1 4 y .
A. P min không tồn tại
B. P min = 65 4
C. P min = 5
D. P min = 34 5
Đáp án C
Ta có: 2 x + 1 4 y 2 x + y ≥ 2 + 1 2 2 (Bất đẳng thức Bunhia Scopky).
(ngoài ra các em có thể thế và xét hàm).
Do đó P ≥ 5.
Cho các số thực dương x, y thoả mãn 2 x + y = 5 4 . Tìm giá trị nhỏ nhất P min của biểu thức P = 2 x + 1 4 y
A. P min không tồn tạ
B. P min = 65 4
C. P min = 5
D. P min = 34 5
Đáp án C
Áp dụng bất đẳng thức Bunhiacopxki,
ta có 2 x + 1 4 y 2 x + y ≥ 2 + 1 2 2 ⇒ P ≥ 5