Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang-g Seola-a
Xem chi tiết
michelle holder
Xem chi tiết
Hà Nam Phan Đình
18 tháng 9 2017 lúc 11:46

ĐKXĐ: \(-1\le x\le8\) Đặt \(t=\sqrt{x+1}+\sqrt{8-x}\) ( Với \(t\ge0\))

\(\Rightarrow t^2=9+2\sqrt{\left(x+1\right)\left(8-x\right)}\)\(\Rightarrow\sqrt{\left(x+1\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\)

\(\Rightarrow t+\dfrac{t^2-9}{2}=3\Rightarrow t^2+2t-15=0\)\(\Rightarrow\left(t+5\right)\left(t-3\right)=0\)

\(\left[{}\begin{matrix}t=-5\left(Loai\right)\\t=3\end{matrix}\right.\Rightarrow t=3\)

\(\Rightarrow3+\sqrt{\left(x+1\right)\left(8-x\right)}=3\) \(\Rightarrow\sqrt{\left(x+1\right)\left(8-x\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\) Thỏa mãn điều kiện .

Vũ Anh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2022 lúc 20:37

Bài 1:

a: TH1: m=-2

Pt sẽ là \(-2\left(-2-1\right)x-2-2=0\)

=>2x-4=0

=>x=2

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-4\left(m+2\right)\left(m-2\right)\)

\(=4m^2-8m+4-4\left(m^2-4\right)\)

=4m^2-8m+4-4m^2+16=-8m+20

Để phương trình vô nghiệm thì -8m+20<0

=>-8m<-20

=>m>5/2

Để phương trình có nghiệm duy nhất thì -8m+20=0

=>m=5/2

Để phương trình có hai nghiệm phân biệt thì -8m+20>0

=>m<5/2

Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:21

3.

ĐKXĐ: ...

Từ pt dưới:

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)

\(\Leftrightarrow y=x-2\)

Thế vào pt trên:

\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)

\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)

\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)

\(\Leftrightarrow x^2-5x+2=0\)

Tâm Cao
Xem chi tiết
Yeutoanhoc
27 tháng 2 2021 lúc 21:03

`x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1>=x>=0)`

`<=>x=((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1+\sqrt{1-\sqrt{x}}))/(1+\sqrt{1-\sqrt{x}})`

`<=>x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})(1-1+\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`

`<=>x=\sqrt{x}.(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`

`<=>\sqrt{x}((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})-1)=0`

Có `x>=0`

`=>1-\sqrt{x}<=1`

`=>1+\sqrt{1-\sqrt{x}}<=2`

`=>1/(1+\sqrt{1-\sqrt{x}})>=1/2`

Mà `(\sqrt{x}+2004)>=2004`

`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})>=2004`

`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})>=1002>0`

`=>\sqrt{x}=0`

`=>x=0`

Vậy `S={0}`

Nguyễn Việt Lâm
27 tháng 2 2021 lúc 21:04

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow x=\left(2004+\sqrt{x}\right)\left(\dfrac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)

\(\Leftrightarrow x=\dfrac{x\left(2004+\sqrt{x}\right)}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2004+\sqrt{x}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2004+\sqrt{x}=2-\sqrt{x}+2\sqrt{1-\sqrt{x}}\)

\(\Leftrightarrow1001+\sqrt{x}=\sqrt{1-\sqrt{x}}\)

\(VT\ge1001\) ; \(VP\le1\) nên (1) vô nghiệm

lê thị tiều thư
Xem chi tiết
Hung nguyen
15 tháng 2 2017 lúc 9:01

a/ \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)

Điều kiện: \(\left[\begin{matrix}x\le-2\\x>1\end{matrix}\right.\)

Xét \(x\le-2\) thì ta có

\(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-4\sqrt{\left(x-1\right)\left(x+2\right)}=12\)

Đặt \(\sqrt{\left(x-1\right)\left(x+2\right)}=a\left(a\ge0\right)\) thì pt thành

\(a^2-4a-12=0\)

\(\Leftrightarrow\left[\begin{matrix}a=-2\left(l\right)\\a=6\end{matrix}\right.\)

\(\Rightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=6\)

\(\Leftrightarrow x^2+x-38=0\)

\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{2}+\frac{3\sqrt{17}}{2}\left(l\right)\\x=-\frac{1}{2}-\frac{3\sqrt{17}}{2}\end{matrix}\right.\)

Trường hợp x > 1 làm tương tự nhé

Kem Su
Xem chi tiết
Tam Cao Duc
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2022 lúc 16:48

a/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)

- Nhận thấy \(x=0\) là 1 nghiệm

- Với \(x\ge2\):

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)

Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)

\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

- Với \(x\le-3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)

\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)

\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))

\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)

\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=0\)

Nguyễn Việt Lâm
17 tháng 9 2022 lúc 16:48

Bài 3: ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)

\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)

a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)

\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)

\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)

\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)

Bài 4 làm tương tự bài 3

Lê Vi
Xem chi tiết
Xuân Tuấn Trịnh
11 tháng 5 2017 lúc 22:20

ĐKXĐ:x khác 0

Xét VT=\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}+2\right)=8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=8\left(x^2+\dfrac{1}{x^2}+2\right)-8\left(x^2+\dfrac{1}{x^2}\right)=16\)

=>(x+4)2=16

<=>x+4=4 hoặc x+4=-4

<=>x=0(L) hoặc x=-8(TM)

Vậy...