Gpt \(\left(3x+1\right)\sqrt{x^2+3}=3x^2+2x+3\)
Gpt \(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
1, gpt:
\(3\sqrt{1+x}+3\sqrt{3-3x}=\sqrt{28x^2-12x+9}\)
2, giải hpt:
\(\left\{{}\begin{matrix}\dfrac{4}{2x+y}+\dfrac{1}{3x-y}=2\\4x+12y=7\left(2x+y\right)\left(3x-y\right)\end{matrix}\right.\).
GPT: \(2\left(x-3\right)\sqrt{x^3+3x^2+x+3}+2\sqrt{x+1}=2x^3-11x^2+29x-38\)
GPT: \(x^3+5x^2+2x=3\left(x+1\right)\sqrt{3x+2}.\)
ĐK \(x\ge-\frac{2}{3}\)
Pt
<=> \(x^3+2x^2-4x-3+3\left(x+1\right)\left(x+1-\sqrt{3x+2}\right)=0\)
<=> \(\left(x+3\right)\left(x^2-x-1\right)+3\left(x+1\right).\frac{\left(x+1\right)^2-3x-2}{x+1+\sqrt{3x+2}}=0\)
<=> \(\left(x+3\right)\left(x^2-x-1\right)+3\left(x+1\right).\frac{x^2-x-1}{x+1+\sqrt{3x+2}}=0\)
<=> \(\orbr{\begin{cases}x^2-x-1=0\\x+3+\frac{3\left(x+1\right)}{x+1+\sqrt{3x+2}}=0\left(2\right)\end{cases}}\)
Pt (2) vô nghiệm do VT>0 với mọi \(x\ge-\frac{2}{3}\)
=> \(x=\frac{1\pm\sqrt{5}}{2}\)(tmĐKXĐ)
Vậy \(x=\frac{1\pm\sqrt{5}}{2}\)
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
GPT
\(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)3
\(\sqrt{3x-2}-\sqrt{x-1}=2x^2-x-3\)
Trả lời :
Con a giai pt vế trái rồi nhân căn bình phương cả 2 vế
Con b cũng giải pt vế phải chuyển vế rồi bình phương cả 2 vế
Chắc vậy
k bt
Gpt : \(3x^2-4x-7=2\left(x+3\right)\sqrt{2x-1}\)
ĐKXĐ: \(x\ge\frac{1}{2}\)
Bình phương hai vế rồi rút gọn, ta được:
\(9x^4-32x^3-70x^2+8x+85=0\)
⇒ \(\left(x-5\right)\left(x-1\right)\left(9x^2+22x+17\right)=0\)
⇒\(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vì biểu thức ở cả hai vế chưa chắc ≥ 0 nên thử lại, ta thấy chỉ có \(x=5\) thỏa mãn.
ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow3x^2-10x-25+6\left(x+3\right)-2\left(x+3\right)\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+5\right)+2\left(x+3\right)\left[3-\sqrt{2x-1}\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+5\right)-\frac{4\left(x+3\right)\left(x-5\right)}{3+\sqrt{2x-1}}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+5=\frac{4\left(x+3\right)}{3+\sqrt{2x-1}}\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow\left(3x+5\right)\left(3+\sqrt{2x-1}\right)=4x+12\)
\(\Leftrightarrow\left(3x+5\right)\sqrt{2x-1}=-3-5x\)
Do \(x\ge\frac{1}{2}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) \(\Rightarrow ptvn\)
Vậy pt có nghiệm duy nhất \(x=5\)
GPT : \(5\sqrt{x^3+3x^2+3x+2}=2\left(x^2+2x+3\right)\)
\(Gpt:2x^3+3x^2+11x-8=\left(3x+1\right)\sqrt{10x^2+2x-8}\)