xy+x+y+2.Tìm x và y
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
cho A=\(\left(\frac{x}{y^2+xy}-\frac{x-y}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x+y}\right):\frac{x}{y}\)
a) tìm TXĐ của A
b) tìm x,y để A>1 và y<0
TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)
Câu b :
\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)
\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)
Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)
Bài 2. Tìm hai số x và y, biết:
a) x + y = 30; xy = 221 b) x^2 + y^2 =13; xy = 6 và x + y >0
a, do x+y=30 và xy=221 nên u và v là nghiệm của pt :
x2-30x+221=0
\(\Delta^,\)=225-221=4 ;\(\sqrt{\Delta^,}\)=2
=> pt có hai nghiệm phân biệt .
x1=13 ; x2=17
Vậy x=13;y=17 hoặc x=17; y=13
1,Cho x,y>0 và xy=2018. Tìm Pmin= 2/x + 1009/y - 2018/(2018x+4y)
2,Cho x,y>0 và x+y=1. Tìm Min B=1/x3+y3 +1/xy
3,Nếu x,y thuộc N* và 2x+3y=53. Tìm max của căn(xy+4)
4,Tìm min P=x^2 +xy +y^2 -3x -3y +2019
5,Cho 0<x<2. Tìm min A= 9x/2-x +2/x
6,Tìm min D= x/y+z + y+z/x + y/x+z + z+x/y + z/x+y + x+y/z
Làm ơn giải giùm mình với, ngay mai kiểm tra rồi.
Cảm ơn nhiều :)))))
Bài 5: Tìm x, y biết:
a) xy = x - y
b) x(y+2) + y = 1
c) xy - 7y + 5x = 0 và y >= 3
a: =>xy-x+y=0
=>x(y-1)+y-1=-1
=>(y-1)(x+1)=-1
=>(x+1;y-1) thuộc {(1;-1); (-1;1)}
=>(x,y) thuộc {(0;0); (-2;2)}
b: =>x(y+2)+y-1=0
=>x(y+2)+y+2-3=0
=>(y+2)(x+1)=3
=>(x+1;y+2) thuộc {(1;3); (3;1); (-1;-3); (-3;-1)}
=>(x,y) thuộc {(0;1); (2;-1); (-2;-5); (-4;-3)}
c:
y>=3
=>y+5>=8
=>y(x-7)+5x-35=-35
=>(x-7)(y+5)=-35
mà y+5>=8
nên (y+5;x-7) thuộc (35;-1)
=>(y;x) thuộc {(30;6)}
Tìm điều kiện xác định và rút gọn
A=((a^3+b^3)/(a+b)-ab)/((a^2-b^2)+(2b)/(a+b))
M=(x+(y^2-xy)/(x+y))/((x)/(xy+y^2)+(y^2)/(xy-x^2)-(x^2+y^2)/(xy))
Tìm điều kiện xác định và rút gọn
A=((a^3+b^3)/(a+b)-ab)/((a^2-b^2)+(2b)/(a+b))
M=(x+(y^2-xy)/(x+y))/((x)/(xy+y^2)+(y^2)/(xy-x^2)-(x^2+y^2)/(xy))
Tìm x, y biêts
5^x - 17^y=2^xy và x - y = 5, 2x+3^y=xy
Ai làm được mih liền. mình sẽ vẫn on đợi mọi người hen.
em mới lp 5 thui ạ! Đợi bao giờ em lp 7 thì em giải cho nha! Thông cảm
Tìm điều kiện của x và y để biểu thức sau có giá trị dương: \(A=\left(\dfrac{x^2-xy}{y^2+xy}-\dfrac{x^2-y^2}{x^2+xy}\right):\left(\dfrac{y^2}{x^3-xy^2}+\dfrac{1}{x-y}\right)\)
Cho 2 số thực x, y thỏa mãn \(x^2+y^2+xy=3\). Tìm GTLN và GTNN của \(S=x^4+xy+y^4\)