\(Cho\)\(P=5+5^2+5^3+5^4+...+5^{102}\)
CMR: P là bội của 6 và 31
Cho A =5+5^2+5^3+5^4+...+5^2014+5^2015+5^2016
a) Tính A
b) CMR: A chia hết cho 6
c) CMR: A chia hết cho 31
CMR : 5+5^2+5^3+5^4+...+5^60 chia hết cho 6 và 31
Các bạn giải nhanh giúp mik với thứ 7 mik nộp rồi
Help me!!
Ta có: 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)= (5+5\(^2\))+(5\(^3\)+5\(^4\) ) +....+( 5\(^{59}\)+5\(^{60}\))=
= 30+ 5^2.(5+5^2)+...+5^58.(5+5^2)= 30+5^2.30+...+5^58.30= 30.(1+5^2+...+5^58)
Vì 30 \(⋮\)6 \(\Rightarrow\)30.(1+5^2+...+5^58) \(⋮\)6 hay 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)\(⋮\)6
5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)= (5+5\(^2\)+5\(^3\) ) +(5\(^4\) + 5^5+5^6) +....+( 5^58+5\(^{59}\)+5\(^{60}\))=
= 155+ 5^3.(5+5^2+5^3)+...+5^57.(5+5^2+5^3)= 155+5^3.155+...+5^57.155=155.(1+5^3+...+5^57)
Vì 155 \(⋮\) 31 \(\Rightarrow\) 155.(1+5^3+...+5^57) \(⋮\) 31 hay 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)\(⋮\) 31
Bạn vào chỗ câu hỏi của bạn Trương NGuyễn Ngọc Mỹ, giải tương tự giống bài của mình nhé
CMR a)3^10+3^11+3^12 chia hết cho 13
b) 5^100+5^101+5^102 chia hết cho 31
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
a) \(3^{10}+3^{11}+3^{12}=3^{10}\left(1+3+3^2\right)=3^{10}\cdot13⋮13\)
b) \(5^{100}+5^{101}+5^{102}=5^{100}\left(1+5+5^2\right)=5^{100}\cdot31⋮31\)
Tìm UWCLN của S và 31 biết:
S = 5+5^2+5^3+...+5^101+5^102
ƯCLN cua S và 31 là 1 vì 31 là sô nguyên tô
ƯCLN(S,31) = 1
Vì 31 là số nguyên tố
ƯCLN của 1 số vs 1 số nguyên tố luôn luôn bằng 1
CMR : a)10^6-10^5-10^4 là bội của 89
b)10^6-5^7 là bội của 59
ta có :
10^6 - 5^7 = 2^6x5^6 - 5^7
=5^6x(2^6 - 5)
=5^6x(64 - 5)
=5^6x59
Mà 59 chia hết cho 59\(\Rightarrow\)10^6 - 5^7 chia hết cho 59
Vậy 10^6 - 5^7 chia hết cho 59
bài 5 : Cho : A=n^6=10n^4+n^3+98n-6n^5-26 và B=1-n+n^3 . CMr với n nguyên thì thương của phép chia A cho B là bội của 6
bài 6 : CM với mọi số nguyên a ta đếu có : a^3+5a là số nguyên chia hết cho 6
cho A=n^6+10n^4+n^3+98n-6n^5-26 và B=1-n+n^3 . CMR : với n nguyên thì thương của phép chia A cho B là bội của 6
a) Cho abcabc là số có 6 chữ số ( abcabc có gạch trên đầu )
Chứng tỏ rằng abcabc là bội của 3
b) Cho : S = 5 + 5^2+5^3+5^4+5^5+5^6+.....+5^2004
Chứng minh : S chia hết cho 125 và S chia hết cho 65
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!
chứng tỏ A là bội của 31 biết rằng A= 5+5^2+5^3+....+5^2010