\(\left(4m^2-9\right)\)x=\(2m^2\)+m-3
Tìm m để phương trình
a) Có 1 ngiệm duy nhất
b)Có vô số nghiệm
bài tập: cho hệ phương trình \(\left\{{}\begin{matrix}x+my=1\\\\mx+y=1\end{matrix}\right.\) (m là tham số )
a, Giaỉ hệ phương trình khi m=1,m=-1,m=2
b,Tìm m để hệ phương trình đã cho
b.1, có nghiệm duy nhất
b.2,vô nghiệm
b.3,có vô số nghiệm
c,Tìm m để hệ có nghiệm duy nhất \(x+2y=3\)
thankyou
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x+y=1\\ x+y=1\end{matrix}\right.\Leftrightarrow x+y=1\Leftrightarrow y=1-x\)
Khi đó, hệ có nghiệm $(x,y)=(a,1-a)$ với $a$ là số thực bất kỳ.
Khi $m=-1$ thì hệ trở thành:
\(\left\{\begin{matrix} x-y=1\\ -x+y=1\end{matrix}\right.\Rightarrow (x-y)+(-x+y)=2\Leftrightarrow 0=2\) (vô lý)
Vậy HPT vô nghiệm
Khi $m=2$ thì hệ trở thành: \(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Rightarrow (x+2y)-(2x+y)=1-1=0\Leftrightarrow y-x=0\Leftrightarrow x=y\)
Thay $x=y$ vào 1 trong 2 PT của hệ thì có: $3x=3y=1\Rightarrow x=y=\frac{1}{3}$Vậy........
b)
PT $(1)\Rightarrow x=1-my$. Thay vào PT $(2)$ có:
$m(1-my)+y=1\Leftrightarrow y(1-m^2)=1-m(*)$
b.1
Để HPT có nghiệm duy nhất thì $(*)$ có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0$
$\Leftrightarrow m\neq \pm 1$
b.2 Để HPT vô nghiệm thì $(*)$ vô nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m\neq 0$
$\Leftrightarrow m=-1$
b.3 Để HPT vô số nghiệm thì $(*)$ vô số nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m=0$
$\Leftrightarrow m=1$
c) Ở b.1 ta có với $m\neq \pm 1$ thì $(*)$ có nghiệm duy nhất $y=\frac{1}{m+1}$
$x=1-my=\frac{1}{m+1}$
Thay vào $x+2y=3$ thì:
$\frac{3}{m+1}=3\Leftrightarrow m=0$
Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\) (m là tham số). Tìm các giá trị tham số m để hệ phương trình:
a) Có nghiệm duy nhất
b) Vô nghiệm
c) Vô số nghiệm
Bài 2: Cho hệ phương trình \(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\\4x-y=-2\end{matrix}\right.\) (m là tham số). Tìm các giá trị m nguyên để hệ phương trình có nghiệm duy nhất (x, y) sao cho x và y nguyên.
Bài 1:
- Với \(m=0\) ta có:
\(\left\{{}\begin{matrix}0x+y=3.0-1\\x+0y=0+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy với \(m=0\) hệ đã cho có nghiệm duy nhất.
- Với \(m\ne0\), ta có:
\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m^2x-my=-3m^2+m\\x+my=m+1\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1-m^2\right)x=-3m^2+2m+1\left(1\right)\)
- Với \(m=1\). Thế vào (1) ta được:
\(0x=0\) (phương trình vô số nghiệm).
\(\left(2\right)\Rightarrow x+y=2\Leftrightarrow y=2-x\)
- Vậy với \(m=1\) thì hệ đã cho có vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-x\end{matrix}\right.\)
Với \(m=-1\). Thế vào (1) ta được:
\(0x=-4\) (phương trình vô nghiệm)
Vậy với \(m=-1\) thì hệ đã cho vô nghiệm
Với \(m\ne\pm1,0\).
\(\left(1\right)\Leftrightarrow x=\dfrac{-3m^2+2m+1}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{-3m^2+3m-m+1}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{3m\left(1-m\right)+\left(1-m\right)}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{\left(1-m\right)\left(3m+1\right)}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{3m+1}{m+1}\)
Thay vào (2) ta được:
\(\dfrac{3m+1}{m+1}+my=m+1\)
\(\Leftrightarrow3m+1+my\left(m+1\right)=\left(m+1\right)^2\)
\(\Leftrightarrow3m+1+my\left(m+1\right)=m^2+2m+1\)
\(\Leftrightarrow my\left(m+1\right)=m^2-m\)
\(\Leftrightarrow y=\dfrac{m\left(m-1\right)}{m\left(m+1\right)}\)
\(\Leftrightarrow y=\dfrac{m-1}{m+1}\)
Vậy với \(m\ne\pm1\) thì hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{3m+1}{m+1};\dfrac{m-1}{m+1}\right)\).
Bài 2:
\(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\left(2\right)\\4x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4x+4\left(m+1\right)y=-4\\4x-y=-2\left(1\right)\end{matrix}\right.\)
\(\Rightarrow4\left(m+1\right)y-y=-6\)
\(\Leftrightarrow\left(4m+3\right)y=-6\)
\(\Rightarrow y=-\dfrac{6}{4m+3}\)
Để y nguyên thì:
\(6⋮\left(4m+3\right)\)
\(\Rightarrow\left(4m+3\right)\inƯ\left(6\right)\)
\(\Rightarrow4m+3\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
4m+3 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
m | -1/2 (loại) | -1/4 (loại) | 0 (nhận) | 3/4 (loại) | -1 (nhận) | -5/4 (loại) | -3/2 (loại) | -9/4 (loại) |
\(\Rightarrow m\in\left\{0;-1\right\}\)
Với \(m=0\) ta có \(y=-\dfrac{6}{4.0+3}=-2\)
Thay vào (1) ta được:
\(4x-\left(-2\right)=-2\Leftrightarrow x=-1\)
Thử lại \(x=-1;y=-2\) cho (2) ta thấy phương trình nghiệm đúng.
Vậy \(\left(x;y\right)=\left(-1;-2\right)\) là 1 nghiệm nguyên của hệ phương trình.
Với \(m=-1\) ta có \(y=-\dfrac{6}{4.\left(-1\right)+3}=6\)
Thay \(y=6\) vào (2) ta được:
\(4x-6=-2\)
\(\Leftrightarrow x=1\)
Thử lại \(x=1;y=6\) cho (2) ta thấy pt nghiệm đúng.
Vậy \(\left(x;y\right)=\left(1;6\right)\) là 1 nghiệm nguyên của hệ phương trình.
Cho hệ phương trình (I)\(\left\{{}\begin{matrix}mx-y=2m\\x-my=1+m\end{matrix}\right.\)
a, Xác định m để hẹ phương trình có nghiệm duy nhất
b, Xác định m để hẹ phương trình có nghiệm nguyên
\(a,\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m^2\\x-my=m+1\end{matrix}\right.\)
\(\Leftrightarrow m^2x-x=2m^2-m-1\Leftrightarrow x\left(m^2-1\right)=2m^2-m-1\)
\(ycầuđềbài\Leftrightarrow m^2-1\ne0\Leftrightarrow m\ne\pm-1\)
\(b,\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2-m-1}{m^2-1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{m^2-1}=\dfrac{2m+1}{m+1}=2+\dfrac{-2}{m+1}\\y=mx-2m=\dfrac{m\left(2m+1\right)-2m^2-2m}{m+1}=\dfrac{-m}{m+1}=-1+\dfrac{1}{m+1}\end{matrix}\right.\)
\(\left(x;y\right)\in Z\Leftrightarrow\left\{{}\begin{matrix}m\ne\pm1\\m+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\\m+1\inƯ\left(1\right)=\left\{1;-1\right\}\end{matrix}\right.\)
\(\Rightarrow m=0;m=-2\)
Cho hệ phuong trình \(\left\{{}\begin{matrix}x+my=4\\x-2y=3\end{matrix}\right.\) .Tìm các giá trị của tham số m để hệ phương trình đã cho :
a) Có nghiệm duy nhất
b) Vô nghiệm :
c) Vô nghiệm:
chỉ có vô nghiệm hoặc vô số nghiệm nhé bạn
vô nghiệm khi x=-2
vô số nghiệm khi x khác -2 nhé
a) Chứng minh rằng \(\forall\) x, phương trình sau vô nghiệm
\(\left|x-1\right|+\left|2-x\right|=-4x^2+12x-10\)
b)Cho phương trình: \(m^2+m^2x=4m+21-3mx\) (x là ẩn)
Tìm m để phương trình trên có nghiệm dương duy nhất.
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
Cho phương trình ( 4m2 - 9)x = 2m2 + m - 3
Tìm m để pt:
a) Có nghiệm duy nhất
b) Có vô số nghiệm
<=> a) (2m) khác -+3 hay m khác +-3/2
b) m=-3/2
câu b bạn giải cụ thể giùm mik đc ko ạ please hihi
(4m^2-9)x=2m^2+m-3
tìm m để phương trình đã cho có:
a) một nghiêm duy nhất
b) vô số nghiệm
Giải thích các bước giải:
(4m^2−9)x=2m2+m+3 (*)
Để (*) có vô số nghiệm thì:
(4m^2−9)=0 (*) và 2m^2+m+3=0 (**)
(∗)⇔x=\(\frac{3}{2}\)và \(x=\frac{-3}{2}\)
(**) vô nghiệm
Vậy không có gt của m để pt có vô số nghiệm
Tìm m để hệ bất phương trình : có nghiệm, vô nghiệm, có nghiệm duy nhất .
a) \(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
MỌI NGƯỜI ƠI GIÚP EM VỚI GẤP LẮM RỒI
Tên vietjack mà không làm được thì mang tiếng người ta quá
a, Hệ ⇔ \(\left\{{}\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ không thể có nghiệm duy nhất
Hệ có nghiệm khi \(\left(1-m;+\infty\right)\cap\left(-\infty;3m-2\right)\ne\varnothing\)
⇔ 3m - 2 > 1 - m
⇔ m > \(\dfrac{4}{3}\)
Vậy hệ vô nghiệm khi m ≤ \(\dfrac{4}{3}\)
Tìm m để hệ phương trình mx+ y = m + 1 và x+ my = 2
a)Có 1 nghiệm duy nhất
b)Vô nghiệm
c)Vô số nghiệm