Cho tam giác ABC cân tại A. AH là đường cao, M là trung điểm của AB, D đối xứng với H qua M.
CM: a. Tứ giác ADBH là hình gì? Vì sao?
b. AC=HD
c. Tìm điều kiện của tam giác ABC để tứ giác ADBH là hình vuông
Cho tam giác ABC, đường cao Ah, gọi D là điểm đối xứng của H qua trung điểm M của AB
a) CM : ADBH là hình chữ nhật
b) Tìm điều kiện của tam giác ABC để ADBH là hình vuông
ADBH có MA=MB(gt); MH=MD(vì D đx H qua M)=>ADBH là hình bình hành. Mà hbh ADBH có 1 góc vuông tại H(gt) nên ADBH là hình chữ nhật.
Hình chữ nhật ADBH là hình vuông<=>AH=BH<=> AH=1/2 BC<=> AH vừa là đường cao vừa là đường trung tuyến<=> tam giác ABC vuông tại A.
Vậy hcn ADBH là hv khi và chỉ khi tam giác ABC là tam giác vuông tại A.
a, Bạn Huy làm đúng rồi.
b, ADBH là hình vuông khi AH = BH
\(\Rightarrow\Delta AHB\) vuông cân tại H
\(\Rightarrow\widehat{ABH}=45^0\Rightarrow\widehat{ABC}=45^0\)
Vậy \(\Delta ABC\) có \(\widehat{ABC}=45^0\) thì ADBH là hình vuông.
Hưng tin mk đi loại bài tập này mk làm quen lắm rồi còn được điểm kiểm tra 1 tiết tuyệt đối nữa đấy. còn cách làm của bn mk sẽ xem xét sau.
2)Cho tam giác ABC cân tại A, đường trung tuyến AH .Gọi I là trung điểm của AC,D là điểm đối xứng của điểm H qua điểm I.
a) C/m tứ giác AHCD là hcn
b) C/m AB//DH
c) Tìm điều kiện của tam giác ABC để tứ giác AHCD là hình vuông
3) Cho tam giác ABC vuông tại A , đường trung tuyến AM . Gọi I là trung điểm của AB và H là điểm đối xứng với điểm M qua I
a)C/m rằng :tứ giác AHBM là hình thoi
b) C/m rằng : HM//AC
c) Tìm điều kiện của tam giác ABC để tứ giác AHBM là hình vuông.
VẼ HÌNH NỮA AH*****
TRL CHI TIẾT AH
Bài 3:
a: Xét tứ giác AMBH có
I là trung điểm chung của AB và MH
MA=MB
Do đó; AMBH là hình thoi
b: Xét ΔBAC có BI/BA=BM/BC
nên IM//AC
=>MH//AC
=>IH//AC
c: Để AHBM là hình vuông thì góc AMB=90 độ
=>ΔABC cân tại A
=>AB=AC
Cho tam giác ABC (AB < AC) có đường cao AH. Gọi M, N, K lấn lượt là trung điểm của AB, AC, BC.
a) Chứng minh : tứ giác BCMN là hình thang.
b) Chứng minh : tứ giác AMKN là hình bình hành.
c) Gọi D là điểm đối xứng của H qua M. Chứng minh : tứ giác ADBH là hình chữ nhật.
d) Tìm điều kiện của tam giác ABC để tứ giác AMKN là hình vuông.
toan lop 8 thi mk chiu thoi mk moi hoc lop 7 .ket ban vs mk nhe
Cho ∆ABC cân tại A, đường cao AH. Gọi D, E thứ tự là trung điểm của AH và AC, M đối xứng
với H qua E.
b) Chứng minh: B đối xứng M qua D.
c) Tia ED cắt AB tại I. Tứ giác AIHE là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì để tứ giác AHCM là hình vuông?
Giúp mình với đang cần gấp!!!
b: Xét tứ giác ABHM có
AM//BH
AM=BH
Do đó: ABHM là hình bình hành
Suy ra: B đối xứng M qua D
Cho tam giac ABC cân tại A, có đường cao AH. Gọi I là trung điểm của AC và E là điểm đối xứng với H qua I.
1. Chứng minh rằng : AC = HE
2. Tứ giác AEHB là hình gì? Vì sao?
3. Tam giác ABC thêm điều kiện gì để tứ giác ABHI là hình thang cân.
4. Tính diện tích tứ giác AECH biết AB = 10cm, BC = 12cm.
1: Xét tứ giác AHCE có
I là trung điểm của AC
I là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{HAC}=90^0\)
nên AHCE là hình chữ nhật
Suy ra: AC=HE
Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?
7
b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
cho tam giác ABC cân tại A , đường cao AH .Gọi E là điểm đối xứng với D qua trung điểm M của AC
a, tứ giác ADCE là hình gì? vì sao??
b, tứ giác ABDM là hình gì?? vì sao?
c, tam giác ABC có thêm điều kiện gì thì thứ giác ADCE là hình vuông ?
d, tam giác ABC có thêm điều kiện gì thiwf tứ giác ABDM là hình thang cân??
a) Tứ giác ACDE có:
AM = CM
DM = ME
=> ACDE là hình bình hành
Mà ADC = 90°
=> ACDE là hình chữ nhật
b) Vì ∆ABC cân tại A
AD là đường cao => AD là trung trực ∆ABC
=> BD = CD
∆ABC có AM = CM
DC = BD
=> MD là đường trung bình
=> DM//AC
=> ABDM là hình thang
c) Để hình chữ nhật ADCE là hình vuông thì AD = DC
=> ∆ADC vuông cân tại D
=> DAC = 46°
=> BAC = 90°
=> Để ADCE là hình vuông thì ∆ABC vuông tại A
a) Xét tứ giác ABDC có
H là trung điểm của đường chéo BC(AH là đường trung tuyến ứng với cạnh BC trong ΔABC)
H là trung điểm của đường chéo AD(A và D đối xứng nhau qua H)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: ΔABC cân tại A(gt)
mà AH là đường trung tuyến ứng với cạnh đáy BC(gt)
nên AH là đường cao ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow AH\perp BC\)
Ta có: AH\(\perp\)BC(cmt)
AH\(\perp\)AE(gt)
Do đó: BC//AE(Định lí 1 từ vuông góc tới song song)
hay HC//AE
Xét ΔAED có
H là trung điểm của AD(A và D đối xứng nhau qua H)
HC//AE(cmt)
Do đó: C là trung điểm của DE(Định lí 1 đường trung bình của tam giác)
Xét ΔAED có
H là trung điểm của AD(A và D đối xứng nhau qua H)
C là trung điểm của DE(cmt)
Do đó: HC là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)
\(\Leftrightarrow HC=\dfrac{AE}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà \(HC=\dfrac{BC}{2}\)(H là trung điểm của BC)
nên AE=BC
Xét tứ giác ABCE có
AE//BC(cmt)
AE=BC(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)