cho a,b,c là các số nguyên dương sao cho mỗi số nhỏ hơn tổng của hai số kia.Chứng minh rằng:a/b+c + b/c+a + c/a+b <2
cho a,b,c là các số nguyên dương sao cho mỗi số nhỏ hơn của tổng 2 só kia.Chứng minh rằng \(\frac{a}{b+c}\)+\(\frac{b}{c+a}\)+\(\frac{c}{a+b}\)< 2
Cho các số a,b,c là các số nguyên dương sao cho mỗi số đều nhỏ hơn tổng hai số còn lại.
Chứng minh rằng: S = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) không phải là số tự nhiên.
\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Theo đề ta được:
\(\hept{\begin{cases}a< \left(b+c\right)\\b< \left(a+c\right)\\c< \left(a+b\right)\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b+c}< 0\\\frac{b}{a+c}< 0\\\frac{c}{a+b}< 0\end{cases}\Rightarrow}\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ne N}\)( Tổng của ba phân số không thể bằng 1 số tự nhiên với a,b,c không là số âm )
Cho a,b,c là các số nguyên dương sao cho mỗi số nhỏ hơn tổng của hai số kia. Chứng tỏ rằng:
a/b+c + b/c+a + c/a+b < 2
các bạn giúp tôi với
Ghi rõ, dễ hiểu giùm nha!
Lên google tra cho nhanh
a) cho a,b,c là các số nguyên dương sao cho mỗi số nhỏ hơn tổng của 2 số kia
CMR: (a/b+c) + (b/c+a) + (c/a+b) <2
b) Tìm 2 số x,y thuộc Q sao cho
1/x+1/y=1/x+y
a) Ta có :
a/b+c< 2a/(a+b+c)
b/(c+a)<2b/(a+b+c)
c/(a+b)<2c/(a+b+c)
=> a/(b+c)+b/(c+a)+c/(a+b)<(2a+2b+2c)/(a+b+c)=2
Vậy...
Cho a,b,c là các số nguyên dương sao cho mỗi số nhỏ hơn tổng của 2 số kia.CMR: \(1<\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<2\)
Cho a, b, c lá các số nguyên dương sao cho mỗi số nhỏ hơn tổng của 2 số kia. CMR
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
Ta có:
\(\frac{a}{b+c}< 1\left(a< b+c\right)\)
\(\frac{b}{c+a}< 1\left(b< c+a\right)\)
\(\frac{c}{a+b}< 1\left(c< a+b\right)\)
Mà \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) là phân số. Như vậy nếu phân số lớn nhất có tử bé hơn mẫu là \(\frac{1}{2}\). Vậy nếu:
\(\frac{a}{b+c}=\frac{1}{2};\frac{b}{c+a}=\frac{1}{2};\frac{c}{a+b}=\frac{1}{2}\) thì tổng sẽ là \(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}=1,5< 2\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(dpcm\right)\)
cho mk hỏi vì sao a/b+c < a+a/a+b+c zậy
cho a,b,c là các số nguyên sao cho mỗi số nhỏ hơn tổng 2 số kia. chứng minh rằng
1<a:(b+c) + b:(a+c) + c:(a+b) <2
cho a,b,c là các số nguyên sao cho mỗi số nhỏ hơn tổng 2 số kia. chứng minh rằng
1<a/(b+c) + b/(a+c) + c/(a+b) <2
+\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\) cộng lại ta được
=>\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>1\)
+\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\) cộng lại
=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\)
cho mk hỏi vì sao a/b+c < a+a/a+b+c zậy