tìm x, y, z nguyên dương thỏa mãn:
2xyz=x+y+z+16
Tìm các số nguyên dương thỏa mãn pt:x+y+z=2xyz giúp mik vs
Cho x; y; z là các số thực dương thỏa mãn: \(x^2+y^2+z^2+2xyz=1\)
Tìm max của \(A=xy+yz+zx-xyz\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)
Không mất tính tổng quát, giả sử đó là y và z
\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)
Mặt khác từ giả thiết:
\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)
\(\Leftrightarrow1-x\ge2yz\)
\(\Rightarrow yz\le\dfrac{1-x}{2}\)
Do đó:
\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)
\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)
\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
Tìm các số nguyên dương thỏa mãn
a) \(\left(x+2\right)y^2+1=x\)
b) x+y+z=2xyz
a) \(\left(x+2\right)y^2+1=x\Leftrightarrow xy^2+2y^2+1-x=0\Leftrightarrow2y^2+1=x-xy^2\Leftrightarrow2y^2+1=x\left(1-y^2\right)\Leftrightarrow x=\frac{2y^2+1}{1-y^2}=-\frac{2y^2+1}{y^2-1}\)
\(=-2+\frac{3}{y^2-1}\)
Để \(x\in Z\)thì \(y^2-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(y^2-1\) | 1 | -1 | 3 | -3 |
\(y^2\) | 2 | 0 | 4 | -2 |
\(y\) | loại | 0 | loại | loại |
\(x\) | loại | -5 | loại | loại |
Vậy \(\left(x;y\right)=\left\{\left(1;0\right)\right\}\)
Cho x,y,z dương thỏa mãn xy +yz+zx+2xyz =1 .Chứng minh :1/x+1/y+1/z >= 4*(x+y+z)
AM-GM p3 :)
Cho các số thực dương x,y,z thỏa mãn 2x + 4y + 7z = 2xyz
Tìm GTNN của biểu thức P = x + y + z
Cho x,y,z là các số dương thỏa mãn :
\(5x^2+2xyz+4y^2+3z^2=60\)
Tìm min của x+y+z
Tìm tất cả các bộ ba số nguyên \(\left(x,y,z\right)\) thỏa mãn
\(2\left(x+y+z+2xyz\right)^2=\left(2xy+2yz+2zx+1\right)^2+2023\)
Tìm số nguyên dương x;y;z biết x+y+z=2xyz
tìm số nguyên dương x,y,z thỏa mãn x*y+y*z+x*z=x*y*z
\(xy+yz+zx=xyz\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do vai trò của x;y;z bình đẳng như nhau;giả sử:\(1< x\le y\le z\)
\(\Rightarrow\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\)
Khi đó,ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=1\)
\(\Rightarrow\frac{3}{x}\ge1\)
\(\Rightarrow x=3;x=2\)
+) Với \(x=3\)\(\Rightarrow\frac{1}{3}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)
\(\Rightarrow\frac{1}{y}+\frac{1}{y}\ge\frac{2}{3}\)
\(\Rightarrow\frac{2}{y}\ge\frac{2}{3}\)
\(\Rightarrow y\le3\)
\(\Rightarrow y=2;y=3\)
+) với \(y=2\Rightarrow z=6\)
+) Với \(y=3\Rightarrow z=3\)
Với \(x=2\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{y}\ge\frac{1}{2}\)
\(\Rightarrow y=1;y=2;y=3;y=4\)
Đến đây rồi thử vào rồi tìm ra z.
Câu kết nhớ từ "HOÁN VỊ"