Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thu Huyền
Xem chi tiết
Eren
25 tháng 12 2018 lúc 21:23

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

Eren
25 tháng 12 2018 lúc 22:11

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

Eren
26 tháng 12 2018 lúc 20:49

Cô - si cho 5 số lên mạng search cách chứng minh nhé

\(G=\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{x^3}+\dfrac{1}{x^3}\ge5\sqrt[5]{\dfrac{1}{3^3}.\dfrac{x^2.x^2.x^2}{x^3.x^3}}=5\sqrt[5]{\dfrac{1}{27}}\)

Dấu "=" xảy ra <=> \(\dfrac{1}{3}x^2=x^3\)

<=> \(x^5=3\)

<=> \(x=\sqrt[5]{3}\)

autumn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 8:58

\(x^2-5x+7+2m=0\Leftrightarrow x^2-5x+7=-2m\)

Xét hàm \(f\left(x\right)=x^2-5x+7\) trên \(\left[1;5\right]\)

\(-\dfrac{b}{2a}=\dfrac{5}{2}\in\left[1;5\right]\)

\(f\left(1\right)=3\) ; \(f\left(\dfrac{5}{2}\right)=\dfrac{3}{4}\) ; \(f\left(5\right)=7\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb thuộc đoạn đã cho khi và chỉ khi:

\(\dfrac{3}{4}< -2m\le3\)

\(\Leftrightarrow-\dfrac{3}{2}\le m< \dfrac{3}{8}\)

Cả 4 đáp án đều sai là sao ta?

Nguyễn Thị Thùy Linh
Xem chi tiết
lê thị thu huyền
Xem chi tiết
Mất nick đau lòng con qu...
25 tháng 12 2018 lúc 17:59

\(A=\left(x-3\right)\left(7-x\right)=-x^2+10x-21=-\left(x^2-10x+25\right)+4\)

\(A=-\left(x-5\right)^2+4\le4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-5\right)^2=0\)\(\Leftrightarrow\)\(x=5\)( thỏa mãn \(3\le x\le7\) ) 

... 

Mất nick đau lòng con qu...
25 tháng 12 2018 lúc 18:03

Còn cách này hay hơn nhé :)) dùng Cosi 

Vì \(3\le x\le7\) nên \(A=\left(x-3\right)\left(7-x\right)\ge0\)

\(\Rightarrow\)\(\sqrt{A}=\sqrt{\left(x-3\right)\left(7-x\right)}\le\frac{x-3+7-x}{2}=\frac{4}{2}=2\)\(\Leftrightarrow\)\(A=2^2=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x-3=7-x\)\(\Leftrightarrow\)\(x=5\) ( thỏa mãn \(3\le x\le7\) ) 

Khánh Anh
Xem chi tiết
pham trung thanh
31 tháng 8 2018 lúc 10:59

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

pham trung thanh
31 tháng 8 2018 lúc 11:02

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

yeens
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 0:25

Dễ dàng nhận ra \(A\ge0\)

\(A^2=x+3-x+2\sqrt{x\left(3-x\right)}=3+2\sqrt{x\left(3-x\right)}\ge3\)

\(\Rightarrow A\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Trương Huy Hoàng
5 tháng 3 2021 lúc 21:55

Ta có: x \(\ge\) 0 \(\Rightarrow\) \(\sqrt{x}\ge0\)  (1)

Ta có: x \(\le\) 3 \(\Rightarrow\) 3 - x \(\ge\) 0 \(\Rightarrow\) \(\sqrt{3-x}\ge0\)  (2)

Từ (1) và (2) \(\Rightarrow\) \(\sqrt{x}+\sqrt{3-x}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 0 hoặc x = 3

Chúc bn học tốt!

Trương Huy Hoàng
5 tháng 3 2021 lúc 21:55
fghj
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 10 2019 lúc 21:04

\(P\le\sqrt{\left(1+1\right)\left(x-1+9-x\right)}=\sqrt{16}=4\) (Bunhiacopxki)

\(\Rightarrow P_{max}=4\) khi \(x-1=9-x\Rightarrow x=5\)

\(P=\sqrt{x-1}+\sqrt{9-x}\ge\sqrt{x-1+9-x}=2\sqrt{2}\)

\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(\left[{}\begin{matrix}x-1=0\\9-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

HoàngMiner
Xem chi tiết
Nguyễn Tiến Đạt
16 tháng 9 2018 lúc 21:51

này mà dám bảo là toán lớp 3 à

đây là toán ở cấp 2 mà

HoàngMiner
16 tháng 9 2018 lúc 21:57

Nhầm :)

Lãnh Hàn Thiên Thiên
13 tháng 4 2020 lúc 19:55

đây mak toán lớp 3 ak 

Khách vãng lai đã xóa