tìm min, max của:
C=(x-3)(7-x) với \(3\le x\le7\)
tìm min, max \(C=\left(x-3\right)\left(7-x\right)\)với \(3\le x\le7\)
tìm min, max \(D=\left(2x-1\right)\left(3-x\right)\) với \(\dfrac{1}{2}\le x\le3\)
tìm min \(E=\dfrac{\left(x+2017\right)^2}{x}\) với x>0
tìm min \(F=\dfrac{\left(4+x\right)\left(2+x\right)}{x}\) với x>0
tim min \(G=x^2+\dfrac{2}{x^3}\)với x>0
tìm min, max \(H=\sqrt{1-2x}+\sqrt{x+8}\)
Ai làm được câu nào thì giúp mình nha!
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
Cô - si cho 5 số lên mạng search cách chứng minh nhé
\(G=\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{x^3}+\dfrac{1}{x^3}\ge5\sqrt[5]{\dfrac{1}{3^3}.\dfrac{x^2.x^2.x^2}{x^3.x^3}}=5\sqrt[5]{\dfrac{1}{27}}\)
Dấu "=" xảy ra <=> \(\dfrac{1}{3}x^2=x^3\)
<=> \(x^5=3\)
<=> \(x=\sqrt[5]{3}\)
Tìm tất cả các giá trị thực của tham số m để hàm số y = x^2 - 5x + 7 + 2m cắt trục hoành tại 2 điểm phân biệt có hoành độ thuộc [1;5]. A. \(3\le m\le7\)B. \(\dfrac{3}{4}\le m\le7\)C. \(-\dfrac{7}{2}\le m\le-\dfrac{3}{8}\)D. \(\dfrac{3}{8}\le m\le\dfrac{7}{2}\)
\(x^2-5x+7+2m=0\Leftrightarrow x^2-5x+7=-2m\)
Xét hàm \(f\left(x\right)=x^2-5x+7\) trên \(\left[1;5\right]\)
\(-\dfrac{b}{2a}=\dfrac{5}{2}\in\left[1;5\right]\)
\(f\left(1\right)=3\) ; \(f\left(\dfrac{5}{2}\right)=\dfrac{3}{4}\) ; \(f\left(5\right)=7\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb thuộc đoạn đã cho khi và chỉ khi:
\(\dfrac{3}{4}< -2m\le3\)
\(\Leftrightarrow-\dfrac{3}{2}\le m< \dfrac{3}{8}\)
Cả 4 đáp án đều sai là sao ta?
Cho hàm số : y=f(x)=\(\left\{{}\begin{matrix}x+2khi0\le x< 3\\-\frac{3}{2}x+5khi3\le x\le5\\2x-7khi5< x\le7\end{matrix}\right.\)
a) Vẽ đồ thị hàm số trên
b)Tìm TXĐ, lập bảng biến thiên của hàm số trên
c) Tìm Min, Max của hàm số trên
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức:
\(A=\left(x-3\right)\left(7-x\right)\) với \(3\le x\le7\)
\(A=\left(x-3\right)\left(7-x\right)=-x^2+10x-21=-\left(x^2-10x+25\right)+4\)
\(A=-\left(x-5\right)^2+4\le4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-5\right)^2=0\)\(\Leftrightarrow\)\(x=5\)( thỏa mãn \(3\le x\le7\) )
...
Còn cách này hay hơn nhé :)) dùng Cosi
Vì \(3\le x\le7\) nên \(A=\left(x-3\right)\left(7-x\right)\ge0\)
\(\Rightarrow\)\(\sqrt{A}=\sqrt{\left(x-3\right)\left(7-x\right)}\le\frac{x-3+7-x}{2}=\frac{4}{2}=2\)\(\Leftrightarrow\)\(A=2^2=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x-3=7-x\)\(\Leftrightarrow\)\(x=5\) ( thỏa mãn \(3\le x\le7\) )
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm min của A= \(\sqrt{x}+\sqrt{3-x}\) với 0\(\le\)x\(\le\)3.
Dễ dàng nhận ra \(A\ge0\)
\(A^2=x+3-x+2\sqrt{x\left(3-x\right)}=3+2\sqrt{x\left(3-x\right)}\ge3\)
\(\Rightarrow A\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Ta có: x \(\ge\) 0 \(\Rightarrow\) \(\sqrt{x}\ge0\) (1)
Ta có: x \(\le\) 3 \(\Rightarrow\) 3 - x \(\ge\) 0 \(\Rightarrow\) \(\sqrt{3-x}\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\sqrt{x}+\sqrt{3-x}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 0 hoặc x = 3
Chúc bn học tốt!
Tìm Min,Max của P=\(\sqrt{x-1}+\sqrt{9-x}\) với x thỏa mãn\(3\le x\le6\)
\(P\le\sqrt{\left(1+1\right)\left(x-1+9-x\right)}=\sqrt{16}=4\) (Bunhiacopxki)
\(\Rightarrow P_{max}=4\) khi \(x-1=9-x\Rightarrow x=5\)
\(P=\sqrt{x-1}+\sqrt{9-x}\ge\sqrt{x-1+9-x}=2\sqrt{2}\)
\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(\left[{}\begin{matrix}x-1=0\\9-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
Tìm Min, Max của \(A=x\left(x^2-6\right)\) với \(0\le x\le3\)
này mà dám bảo là toán lớp 3 à
đây là toán ở cấp 2 mà
đây mak toán lớp 3 ak