Tìm x biết : 2014.Ix-12I+(x-12)2=2013.I12-xI
Tìm x biết 2014.Ix-12I+(x-12)2=2013.I12-xI
Lời giải:
$2014|x-12|+(x-12)^2=2013|12-x|$
$\Rightarrow 2014|x-12|+|x-12|^2=2013|x-12|$
$\Rightarrow |x-12|+|x-12|^2=0$
$\Rightarrow |x-12|(1+|x-12|)=0$
Hiển nhiên $1+|x-12|\geq 1>0$ với mọi $x$
$\Rightarrow |x-12|=0$
$\Rightarrow x=12$
Tìm x biết
2014.Ix-12I+(x-12)2=2013.I12-xI
\(2014\left|x-12\right|+\left(x-12\right)^2=2013\left|12-x\right|\)
\(\Leftrightarrow2014\left|x-12\right|+\left(x-12\right)^2=2013\left|x-12\right|\)
Đặt \(t=\left|x-12\right|\left(t\ge0\right)\) ta có:
\(2014t+t^2=2013t\)
\(\Leftrightarrow t^2+t=0\)\(\Leftrightarrow t\left(t+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}t=0\\t=-1\left(loai\right)\end{array}\right.\)
Với \(t=0\Rightarrow\left|x-12\right|=0\Rightarrow x-12=0\Rightarrow x=12\)
Vậy x=12
Tìm x biết:
2014.Ix-12I + ( x -12)2 = 2013.I12-xI
C/m rằng : I x-12I=I12-xI
Easy!
Bài giải
Xét:
TH1: \(x\ge12\)
\(\Rightarrow\left|x-12\right|\ge x-12\) (do \(\left|a-b\right|\ge0\forall a,b\)) (1)
Và \(\left|12-x\right|\ge-\left(12-x\right)=x-12\) (do \(x\ge12\) và \(\left|b-a\right|\ge0\forall a,b\)) (2)
Từ (1) và (2) suy ra \(\left|x-12\right|=\left|12-x\right|\Rightarrow\)mệnh đề đúng với \(x\ge12\)
TH2: \(x< 12\)
\(\Rightarrow\left|x-12\right|=-\left(x-12\right)=12-x\) ( do \(x< 12\) và \(\left|a-b\right|\ge0\forall a,b\)) (3)
Và \(\left|12-x\right|=12-x\) (do x < 12 và \(\left|b-a\right|\ge0\forall a,b\)) (4)
Từ (3) và (4) suy ra \(\left|x-12\right|=\left|12-x\right|\Rightarrow\)mệnh đề đúng với x < 12
Từ đó suy ra mệnh đề đúng với mọi x. (đpcm)
Tìm x biết: 2014*/x-12/+[x-12]^2=2013*/12-x/
Tìm x , biết
2014*|x-12|+(x-12)^2=2013*|12-x|
tìm x biết : 2014./x-12/+ (x-12)2 =2013./12-x/
Tìm x:
1.Ix+1I + Ix+2I + Ix+3I + ... Ix+12I=11x
Ta có:
1.Ix+1I + Ix+2I + Ix+3I + ... Ix+12I=11x
=> x>=0
=>x+1 + x+2 + x+3 + ... x+12=11x
=> (x+x+x+x..+x)+(1+2+...+12)=11x
Dãy 1;2;...;12 có số số hạng là:
(12-1)+1=12 ( số hạng )
=> (12x)+(12+1).12:2=12x+78=11x
=> -x=78
=> x=-78
k bít có đúng k
Tìm x, biết 2014.|x - 12|+ \(\left(x-12\right)^2\)= 2013 . |12 - x|