chứng tỏ rằng 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a) n + 3 và n + 2;
b) 3n + 4 và 3n + 7;
c) 2n + 3 và 4n+ 8.
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a,3n+4 và 3n+7
b,2n+3 và 4n+8
c,n và n+1
d,2n+5 và 4n+12
e,2n+3 và 3n+5
Giúp mình với ạ,mình đang cần gấp!!!
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
Chứng tỏ với mọi n thuộc N* : 3n+1 và 4n+1 đều là hai số nguyên tố cùng nhau
Chứng tỏ rằng 2n + 3 và 3n + 4 là số nguyên tố cùng nhau với mọi n thuộc N
Gọi d là ƯCLN( 2n+3;3n+4)
=> 2n+3 chia hết cho d và 3n+4 chia hết cho d
=> (2n+3) - (3n+4) chia hết cho d
=> 3(2n+3) - 2(3n+4) chia hết cho d
=> (6n+9) - (6n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(2n+3; 3n+4) = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau
quá dễ:
Ta có: gọi ước chung lớn nhất của 2n + 3 và 3n + 4 là d
theo đề, ta lại có: (2n+3) : (3n+4) = d
3(2n+3) : 2(3n+4) = d
(6n+9): (6n + 8) = d
Suy ra d = 1
vậy UWCLN của 2n+3 và 3n+4 là 1
Do đó 2n+3 và 3n+ 4 là hai số nguyên tố cùng nhau
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì số 3n +1 và số 4n+1 là hai số nguyên tố cùng nhau
Với số tự nhiên n,chứng tỏ các cặp số sau là số nguyên tố cùng nhau.
a)2n + 3 và 3n + 5 c,3n + 4 và 4n + 5
b)5n + 3 và 7n + 5 d,4n + 1 và 6n + 2
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Chứng tỏ rằng n + 2 và 3n + 7 là nguyên tố cùng nhau với mọi số tự nhiên n:
Chứng minh:
A:5n+2 và 8n+3 là 2 số nguyên tố cùng nhau với mọi số tự nhiên N
B:6n+5 và 8n+4 là 2 số nguyên tố cùng nhau với mọi số tự nhiên N
k biết có giúp được bạn k?
~chúc bạn học tốt~
chứng tỏ rằng 2 số n+1 và 3n+4 (n thuộc N) là 2 số nguyên tố cùng nhau
Chứng tỏ rằng hai số n+1 và 3n+4 ( n thuộc N) là hai số nguyên tố cùng nhau. MONG MỌI NGƯỜI KO CHÉP MẠNG vì tôi ko hiểu
gọi UCLN(3n+4;n+1) là d
=> 3n+4 ⋮ d
và n+1 ⋮ d
=>3n+4 ⋮ d
3n+3⋮d
=>3n+4-3n-3⋮d
=>1⋮d
=>d=1(n thuộc N)
=> điều phải chứng minh