Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khoa Nguyên
Xem chi tiết
Trần Thùy Dương
23 tháng 12 2018 lúc 10:51

a)  Ta có :

\(\hept{\begin{cases}NE\perp DM\\MG\perp BN\end{cases}}\)

\(\Rightarrow DM//BN\)

\(\Rightarrow\widehat{EDN}=\widehat{GBM}\)( sole trong)   (1)

Mà \(\widehat{ADE}=\widehat{EDN}\)(2)

Từ (1) và(2)

\(\Rightarrow\widehat{ADE}=\widehat{GBM}\) 

Lại có : \(DM//BN\left(cmt\right)\)

\(\Rightarrow\widehat{AMD}=\widehat{GBM}\)

\(\Rightarrow\widehat{ADM}=\widehat{AMD}\)

=> Tam giác ADM cân tại A 

\(\Rightarrow AM=AD\left(dpcm\right)\)

b) P/s:  phải là chứng minh tam giác MGB và tam giác NED chớ không phải tam giác MHB bạn ơi .

giải : Xét \(\Delta MGB\)và \(\Delta NED\)ta có :

\(MB=DN\)

\(\widehat{E}=\widehat{G}=90^o\)

\(\widehat{EDN}=\widehat{GBM}\)( câu a )

=> \(\Delta MGB=\Delta NED\)( cạnh huyền - góc nhọn )

c) Vì ABCD là hình bình hành 

\(\Rightarrow BM//DN\)( vì AB // CD )   (1)

Lại có :  \(DM//BN\)( câu a )   (2)

Từ (1)và(2)

=>  MBND là hình bình hành (đpcm)

White Silver
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 21:28

a: Xét ΔADM và ΔCBN có 

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

Man Thị Sung
Xem chi tiết
Dĩnh Trương
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 22:30

a: Xét ΔADM và ΔCBN có

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

Nam Nguyễn
Xem chi tiết
Nguyễn Thị Huyền Sâm
Xem chi tiết
Nguyễn Anna
Xem chi tiết
Vil Love Zoi
24 tháng 10 2016 lúc 21:20

Bạn tự vẽ hình nhá!!!!

a) ABCD là hình bình hành=>góc ADC=góc ABC => góc MBN=góc MDN

Mà: góc MBN= góc BNC( so le trong) => góc BNC=góc MDN => DM//BN

b) Từ phần a ta có:

Xét DMNB có  DM//BN

                      BM//DN (do AB//CD)

=> DMNB là hbh

c) Ta có:

góc AMD= góc MDC(so le trong) => góc ADM= góc AMD=> Tam giác AMD cân tại A

Mà: AH là đường phân giác=> AH là đường cao<=> AH vuông góc với DM (1)

=>AG vuông góc với BN ( do DM//BN)     (2)

Tương tự, ta cũng chứng minh được tam giác BNC cân tại C

Mà: CF là đường PG=> CF vuông góc với BN (3)

Từ (1); (2); (3) => HEFG là hcn do có 3 góc vuông

Bùi Thị Minh Phương
Xem chi tiết
Bùi Thị Minh Phương
10 tháng 10 2021 lúc 9:21

giúp mình với ạbucminh

Thịnh
10 tháng 10 2021 lúc 9:23

Thịnh
10 tháng 10 2021 lúc 9:24

undefined

trịnh minh anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 11:22

a: Xét ΔADM và ΔCBN có 

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

Giang Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 23:15

a: Xét ΔDAM có \(\widehat{DAM}=\widehat{DMA}\left(=\widehat{BAM}\right)\)

nên ΔDAM cân tại D

hay DA=DM

Xét ΔBNC có \(\widehat{BNC}=\widehat{BCN}\)

nên ΔBNC cân tại B

Suy ra: BN=BC