x+(x+1)+(x+2)+....+(x+2009)=2009*3015
\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\left(1\right)\)
\(Đkxđ:x\ne2009;x\ne2010\)
Đặt \(t=x-2010\left(t\ne0\right)\)
\(\Rightarrow2009-x=-\left(t+1\right)\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(t+1\right)^2-\left(t+1\right)t+t^2}{\left(t+1\right)^2+\left(t+1\right)t+t^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{t^2+2t+1-t^2-t+t^2}{t^2+2t+1+t^2+t+t^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{t^2+t+1}{3t^2+3t+1}=\dfrac{19}{49}\)
\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)
\(\Leftrightarrow8t^2+8t-30=0\)
\(\Leftrightarrow4t^2+4t-15=0\)
\(\Leftrightarrow\left(4t^2+4t+1\right)-16=0\)
\(\Leftrightarrow\left(2t+1\right)^2=16=4^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2t+1=4\\2t+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{3}{2}\\t=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2010=\dfrac{3}{2}\\x-2010=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4023}{2}\\x=\dfrac{4015}{2}\end{matrix}\right.\)
a) 25 - y^2 = 8(x+2009)^2 \Leftrightarrow 8(x+2009)^2 + y^2 = 25
Do y^2 \geq 0 \Rightarrow (x+2009)^2 \leq 25/8
\Rightarrow x+2009 =0 hoặc 1
Nếu x+2009 = 1 \Rightarrow 25 - y^2 = 1\Rightarrow y^2 = 26 (không tìm được y)
Nếu x+2009 = \Rightarrow 25 - y^2 = 0\Rightarrow y^2 = 25, y=5
Vậy (x=0;y=5)
CMR nếu 1/x+1/y+1/z=1/x+y+ z thì 1/x^2009+1/y^2009+1/z^2009=1/x^2009+y^2009+z^2009
tim x
(2009-x)^2+(2009-x)×(x-2010)+(x-2010)^2/(2009)^2-(2009-x)×(x-2010)+(x-2010)^2=19/49
tìm x biết :
(2009 - x^2) + ( 2009 - x^2)( x - 2010) + ( x - 2010) / (2009 - x^2) - ( 2009 - x^2)( x - 2010) + ( x - 2010 ) = 19/49
Tìm x:
a) x + (x+1) + (x+2) +...+ (x+2010)= 2029099
b) 2 + 4 + 6 + 8 +...+ 2x = 210
2) So Sánh:
a)\(A=\frac{2009^{2008+1}}{2009^{2009+1}}vàB=\frac{2009^{2009+1}}{2009^{2010+1}}\)
b) C= 1.3.5.....99 với \(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)
Bài 2:b)Ta có:
D=(51*52*53*...*100):2^50.
=(51*53*55*...*99)*(52*54*56*...*100):2^50.
Khử 51*53*55*...*99 thì cần so sánh 1*3*5*...*41 với (52*54*56*...*100):2^50.
Lại có:
52*54*56*...*100:2^50=(52:2)*(54:2)*...*(100:2):(2^25) (vì 52;54;56;...;100 có 25 thừa số.
=26*27*28*...*50:2^25.
=(27*29*31*...*49)*(26*28*30*...*50):2^25
Khử với 1*3*5*...*49 thì cần so sánh 1*3*5*...*25 với (26*28*30*...*50):2^25.
Lại có:
26*28*30*...*50:2^25=(26:2)*(28:2)*(30:2)*...*(50:2):2^12(vì 26;28;30;...;50 có 13 thừa số).
=13*14*15*...*25:2^12.
=(13*15*17*19*21*23*25)*(14*16*18*20*22*24):2^12.
Khử với 1*3*5*...*25 thì cần so sánh 1*3*5*7*9*11 với (14*16*18*20*22*24):2^12.
Giờ số nhỏ rồi bấm máy tính so sánh là được.\
=>C=D.
Vậy C=D.
mấy câu kia dễ rồi tự l;àm nha mk nhắc câu khó thôi.
tk cho mk nha các bn.
-chúc ai tk mk học giỏi-
1/
a, x + (x+1) + (x+2) +...+ (x+100) = 2029099
(x+x+x+...+x) + (1+2+...+100) = 2029099
2011x + 2021055 = 2029099
2011x = 2029099 - 2021055
2011x = 8044
x = 8044 : 2011
x = 4
b, 2+4+6+....+2x = 210
=> 2(1+2+3+...+x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x+1) = 14.15
=> x = 14
2/
a, Vì B < 1
\(\Rightarrow B< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}\)= A
Vậy A > B
b, Ta có:
\(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.4....50\right)}{2^{50}.\left(1.2.3.4....50\right)}\)
\(=\frac{1.2.3.4.5.6.....100}{\left(2.1\right)\left(2.2\right).\left(2.3\right).....\left(2.50\right)}\)
\(=\frac{1.2.3.4.5.6......100}{2.4.6........100}=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)
\(=1.3.5....99=C\)
Vậy C = D
D=(51*52*53*...*100):2^50.
=(51*53*55*...*99)*(52*54*56*...*100):2^50.
Khử 51*53*55*...*99 thì cần so sánh 1*3*5*...*41 với (52*54*56*...*100):2^50.
Lại có:
52*54*56*...*100:2^50=(52:2)*(54:2)*...*(100:2):(2^25) (vì 52;54;56;...;100 có 25 thừa số.
=26*27*28*...*50:2^25.
=(27*29*31*...*49)*(26*28*30*...*50):2^25
Khử với 1*3*5*...*49 thì cần so sánh 1*3*5*...*25 với (26*28*30*...*50):2^25.
Lại có:
26*28*30*...*50:2^25=(26:2)*(28:2)*(30:2)*...*(50:2):2^12(vì 26;28;30;...;50 có 13 thừa số).
=13*14*15*...*25:2^12.
=(13*15*17*19*21*23*25)*(14*16*18*20*22*24):2^12.
Khử với 1*3*5*...*25 thì cần so sánh 1*3*5*7*9*11 với (14*16*18*20*22*24):2^12.
Giờ số nhỏ rồi bấm máy tính so sánh là được.\
=>C=D.
Vậy C=D
chúc cậu hôk tốt @_@
Tìm x : (2009-x)2+(2009-x)(x-2010)+(x-2010)2/(2009-x)2-(2009-x)(x-2010)+(x-2010)2=19/49
tìm x biết \(\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+\left|x+\frac{3}{2009}\right|+...+\left|x+\frac{2008}{2009}\right|\) =2009x
\(\hept{\begin{cases}\left|x+\frac{1}{2009}\right|\ge0\\....\\\left|x+\frac{2008}{2009}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+....\left|x+\frac{2008}{2009}\right|\ge0}\)
\(\Rightarrow2009x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2009}\right|=x+\frac{1}{2009}\\....\\\left|x+\frac{2008}{2009}\right|=x+\frac{2008}{2009}\end{cases}\Rightarrow x+\frac{1}{2009}+...+x+\frac{2008}{2009}}=2009x\)
\(2008x+201840=2009x\Rightarrow x=201840\)
p/s: cách làm thì khá ok, nhưng kq không chắc lắm nhé, có gì bn tính lại nha
Boul đẹp trai_tán gái đổ 100% sai 100%
Sao dòng cuối lại tek ? Các phân số ấy cộng vào không thể là 201840
Về hướng làm thì đúng nhưng chỉ đúng đến bước phá trị thôi
Tham khảo cách làm nhưg nhớ đổi đoạn cuối nhé !
a sorry cộng lại quên mẹ chia cho 2009 :> mà tính máy tính ko hiểu sao cx sai lun, đổi lại kq nha :>
\(x=\frac{2017036}{2009}=1004\)
tìm x
x + ( x + 1 ) + ( x + 2 ) + ( x +3 ) + .......... + ( x + 2009 ) = 2009 . 2010
x+(x+1)+...+(x+2009) dãy số trên ta có : x+2009-x+1=2010
=> x+(x+1)+....+(x+2009)=(x+x+2009).2010:2=(2x+2009).1005
=>(2x+2009).1005= 2009.2010
2x+2009 = 2009.2
2x=2009.2-2009
2x=2009
x=\(\frac{2009}{2}\)