cho 2n số thực : \(a_1,a_2,...,a_n;b_1,b_2,...,b_n\)
CMR : \(\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_n^2\right)}\)
Cho n số thực dương \(a_1,a_2,..,a_n\) có tổng bằng 1
Chứng minh rằng \(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)
\(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)
\(\Leftrightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{n}{2n-1}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{2\left(a_1+a_2+...+a_n\right)-\left(a^2_1+a^2_2+...+a_n^2\right)}\)
\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{1}{2-\left(a^2_1+a^2_2+...+a_n^2\right)}\)
Chứng minh rằng \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)
\(\Leftrightarrow2n-1\ge n\left[2-\left(a^2_1+a^2_2+...+a^2_n\right)\right]\)
\(\Leftrightarrow2n-1\ge2n-n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow-1\ge-n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow1\le n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow\dfrac{1}{n}\le a^2_1+a^2_2+...+a^2_n\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow VP=\dfrac{a^2_1}{1}+\dfrac{a^2_2}{1}+...+\dfrac{a^2_n}{1}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}=\dfrac{1}{n}\)
\(\Rightarrow\) đpcm
Vậy \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)
\(\Rightarrow\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\) ( đpcm )
Với 2n số thực không âm \(a_1,a_2,...,a_n\)và \(b_1,b_2,...,b_n\), Chứng minh rằng:
\(\left(a_1+a_2+...+a_n\right)\left(b_1+b_2+...+b_n\right)\le\left(\frac{a_1+a_2+...+a_n+b_1+b_2+...+b_n}{n}\right)^n\)
mày bị điên đứa nào thích thì mà đứa nào chơi truy kích cho tao nick
Cho \(a_1,a_2,..,a_n\) là các số nguyên dương và n>1.
Đặt \(A=a_1a_2...a_n,\) \(A_i=\dfrac{A}{a_i}\left(i=\overline{1,n}\right)\). CM các đẳng thức sau:
a) \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=A\)
b) \(\left[a_1,a_2,..,a_n\right]\left(A_1,A_2,...,A_n\right)=A\)
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
\(Cho\) \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{n-1}}{a_n}=\dfrac{a_n}{a_1}\). Và \(a_1+a_2+...+a_n\ne0;a_1=-\sqrt{5}\). Tính \(a_2;a_3;...a_n=?\)
Cho các số nguyên \(a_1,a_2,a_3,...,a_n\). Đặt \(S=a_1^3+a_2^3+a_3^3+...+a_n^3\) và \(P=a_1+a_2+a_3+...+a_n\). Chứng minh rằng \(S⋮6\) khi \(P⋮6\)
\(S-P=a_1^3-a_1+a_2^3-a_2+...+a_n^3-a_n\)
\(=a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+...+a_n\left(a_n-1\right)\left(a_n+1\right)\)
Do \(a_k\left(a_k-1\right)\left(a_k+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6
\(\Rightarrow S-P⋮6\)
Mà \(P⋮6\Rightarrow S⋮6\)
Cho \(A_n=\dfrac{1}{\left(2n+1\right)\sqrt{2n-1}},\forall n\in N\text{*}\)
CMR: \(A_1+A_2+...+A_n< 1\)
\(A_n=\dfrac{\sqrt{2n-1}}{\left(2n+1\right)\left(2n-1\right)}=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n+1}}\right)\)
\(< \dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n-1}}\right)\)
\(=\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\)
\(\Rightarrow A_1+A_2+...+A_n< 1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}=1-\dfrac{1}{\sqrt{2n+1}}< 1\)
Chứng minh rằng với các số thực dương \(a_1,a_2,a_3,...a_n\)thì:
\(\sqrt[n]{\frac{a_1^2+a_2^2+a_3^2+...+a_n^2}{n}}\)\(\ge\frac{a_1+a_2+a_3+...+a_n}{n}\)\(\ge\sqrt[n]{a_1a_2a_3...a_n}\)\(\ge\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}\)
Cái đầu tiên là \(\sqrt[n]{\frac{a_1^n+a_2^n+a_3^n+...+a_n^n}{n}}\)nhé.
Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.
Link : http://olm.vn/hoi-dap/question/715065.html
Thấy Online Math chọn thì không nỡ bỏ quên :v
Đề : Chia số \(2013^{2016}\) thành tổng các số tự nhiên.
Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.
Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.
Cách giải :
Đặt \(2013^{2016}=a_1+a_2+...+a_n\)
Tổng lập phương các số tự nhiên này là :
\(a_1^3+a_2^3+...+a_n^3\)
Có :
\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)
\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)
\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)
\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)
Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.
Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.
Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)
cho a_1,a_2,...,a_n>0, gọi m= min {a_1, a_2, ..., a_n} và M = max {a_1, a_2, ..., a_n}, A = a_1 +a_2 + ...+ a_n và B=1/a_1 + ...+ 1/a_n.
CMR B\(\le\)1/mM.[n(m+M) - A]