Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ỵyjfdfj
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 22:59

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{2}{3}}=\dfrac{c}{\dfrac{3}{4}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}}=\dfrac{69}{\dfrac{23}{12}}=36\)

Do đó: a=18; b=24; c=27

ỵyjfdfj
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 22:49

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{2}{3}}=\dfrac{c}{\dfrac{3}{4}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}}=\dfrac{69}{\dfrac{23}{12}}=36\)

Do đó: a=18; b=24; c=27

IU
Xem chi tiết
Nguyễn Thái Thịnh
1 tháng 3 2020 lúc 19:28

a, Gọi 3 phần đó là \(x,y,z\)

Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)

\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)

\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)

\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)

Vậy 3 phần đó là \(150;90;75\)

Mình làm hơi tắt, bạn thông cảm nhé!

Khách vãng lai đã xóa
tran thanh tam
Xem chi tiết
Trương Anh Quân
Xem chi tiết
Yen Nhi
2 tháng 1 2022 lúc 19:44

Answer:

Câu 1:

Gọi ba phần được chia từ số 470 lần lượt là x, y, z 

Có: Ba phần tỉ lệ nghịch với 3, 4, 5

\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)

\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)

Câu 2: 

Gọi ba phần được chia từ số 555 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)

Câu 3:

Gọi ba phần được chia từ số 314 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)

Khách vãng lai đã xóa
ABCD
Xem chi tiết
Giang シ)
30 tháng 12 2021 lúc 19:22

Tham khảo :

Không có mô tả.

 

Lương Linh
Xem chi tiết
Đinh Minh Đức
28 tháng 11 2021 lúc 19:51

mỗi đề bài cậu gọi là a;b;c rồi áp dụng tính chất dãy tỉ số bằng nhau nhé

Lương Linh
Xem chi tiết
Thanh Tu Nguyen
Xem chi tiết
Nguyễn Khánh Chi 	Mai
22 tháng 2 2023 lúc 21:56

...

 

NguyenNgocAnh_71
Xem chi tiết