Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng bắc nguyệt
Xem chi tiết
Trang
3 tháng 4 2017 lúc 16:57

theo bài ra ta có:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}\)

áp dụng tính chất dãy tỉ số bàng nhau ta có:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}=\dfrac{a^2+b^2+2ab}{c^2+d^2+2cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{c\left(a+b\right)}{a\left(c+d\right)}=\dfrac{b\left(c+d\right)}{d\left(a+b\right)}\\ \Rightarrow\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}\)áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}=\dfrac{\left(ca+cb\right)-\left(bc+bd\right)}{\left(ca+ad\right)-\left(ad+bd\right)}=\dfrac{ca-bd}{ca-bd}=1\\ \Rightarrow ca+cb=ca+ad\\ \Rightarrow cb=ad\\ \Rightarrow ad=bc\left(đpcm\right)\)

Nguyễn Thanh Hiền
Xem chi tiết
thy nguyen
Xem chi tiết
minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 21:36

d: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{3\cdot\left(dk\right)^2+5\cdot\left(bk\right)^2}{3d^2+5b^2}=k^2\)

\(\dfrac{c^2}{d^2}=\dfrac{\left(dk\right)^2}{d^2}=k^2\)

Do đó: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)

piojoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2023 lúc 21:08

a/b<c/d

mà b>0 và d>0

nên \(\dfrac{a\cdot b}{b\cdot b}< \dfrac{c\cdot d}{d\cdot d}\)

=>ab/b^2<cd/d^2

=>\(\dfrac{ab}{b^2}< \dfrac{ab+cd}{b^2+d^2}< \dfrac{cd}{d^2}=\dfrac{c}{d}\)

=>\(\dfrac{a}{b}< \dfrac{ab+cd}{b^2+d^2}< \dfrac{c}{d}\)

Thanh Tu Nguyen
Xem chi tiết
Thanh Tu Nguyen
23 tháng 3 2023 lúc 22:08

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

Zata
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
7 tháng 3 2023 lúc 17:32

Theo đề bài ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )

Theo tính chất dãy tỉ số bằng nhau ta có :

\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)  ( 2 )

Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )

Từ ( 2 ) , ( 3 ) 

 = > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )

 

Phan An
Xem chi tiết
Rin Huỳnh
1 tháng 10 2021 lúc 19:18

a) pt

<=> (x - 5)(x + 5) - (x - 5) = 0

<=> (x - 5)(x + 4) = 0

<=> x - 5 = 0 hoặc x + 4 = 0

<=> x = 5 hoặc x = -4

b) pt

<=> (2x - 1)(2x - 1 - 2x - 1) = 0

<=> (2x - 1).(-2)=0

<=> 2x - 1 = 0

<=> x = 1/2

c) pt

<=> (x - 1)(x + 1)(x^2 + 4) = 0

<=> x - 1 = 0 hoặc x + 1 = 0 hoặc x^2 + 4 = 0

<=> x = 1 hoặc x = -1

Thuy Bui
1 tháng 10 2021 lúc 19:23

a,x2−52−(x−5)=0<=>(x−5)(x+5)−(x−5)=0<=>(x−5)(x+4)=0=>x=5;x=−4.b,x2−x−6=0<=>x2−3x+2x−6=0<=>x(x−3)+2(x−3)=0<=>(x+2)(x−3)=0=>x=3;x=−2

hưng phúc
1 tháng 10 2021 lúc 19:23

a. x2 - 25 - (x - 5) = 0

<=> x2 - 52 - (x - 5) = 0

<=> (x - 5)(x + 5) - (x - 5) = 0

<=> (x + 5 - 1)(x - 5) = 0

<=> (x + 4)(x - 5) = 0

<=> \(\left[{}\begin{matrix}x+4=0\\x-5=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)

b. (2x - 1)2 - (4x2 - 1) = 0

<=> (2x - 1)2 - (2x - 1)(2x + 1) = 0

<=> (2x - 1)(1 - 2x + 1) = 0

<=> (2x - 1)(2 - 2x) = 0

<=> \(\left[{}\begin{matrix}2x-1=0\\2-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

c. x2(x2 + 4) - x2 - 4 = 0

<=> x2(x2 + 4) - (x2 + 4) = 0

<=> (x2 - 1)(x2 + 4) = 0

<=> (x - 1)(x + 1)(x2 + 4) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\x+1=0\\x^2+4=0\left(VLí\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

The Secret One
Xem chi tiết