Tính \(\frac{1}{2\cdot4}\)+\(\frac{1}{4\cdot6}+...+\frac{1}{98\cdot100}\)
tính hợp lí :
B=\(\frac{1\cdot4}{2\cdot3}+\frac{2\cdot5}{3\cdot4}+\frac{3\cdot6}{4\cdot5}+.....+\frac{98\cdot101}{99\cdot100}\)
\(\frac{1}{1\cdot3}-\frac{1}{2\cdot4}+\frac{1}{3\cdot5}-\frac{1}{4\cdot6}+...+\frac{1}{97\cdot99}\frac{1}{98\cdot100}\)
B=\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{96\cdot98}+\frac{1}{98\cdot100}\)
Please help me!!!!!!!!
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{96}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)
Bn Nguyễn Tuấn Minh làm đúng rồi đó bạn
\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{96.98}+\frac{1}{98.100}\)
\(B=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{96.98}+\frac{2}{98.100}\right)\)
\(B=\frac{1}{2}.(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{96}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100})\)
\(B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(B=\frac{1}{2}.\frac{49}{100}\)
\(B=\frac{49}{200}\)
\(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)=?
\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
= \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{3}-\frac{1}{100}\)
= \(\frac{97}{300}\)
Tính nhanh
\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+.........+\frac{1}{99\cdot100}\)
https://olm.vn/hoi-dap/detail/79674718114.html
Link đó
tính giá trị biểu thức
Q=\(\frac{1}{1\cdot3}\)-\(\frac{1}{2\cdot4}\)+\(\frac{1}{3\cdot5}\)-\(\frac{1}{4\cdot6}+......+\frac{1}{97\cdot99}-\frac{1}{98\cdot100}\)
2Q = 1-1/3-1/2+1/4+1/3-1/5-1/4+1/6-........+1/97-1/99-1/98+1/100 = 1-1/2-1/99+1/100 = 4949/9900 >> Q = 49499/19800
\(Q=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}+\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{99}{100}=\frac{99}{200}\) (không chắc cho lắm :v)
Tính giá trị của biểu thức :\(\frac{1}{2\cdot4\cdot6}+\frac{1}{4\cdot6\cdot8}+\frac{1}{6\cdot8\cdot10}+...+\frac{1}{96\cdot98\cdot100}\)
Mong các bạn giúp đỡ !Thanks
\(\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+\frac{3}{6\cdot8}+.....+\frac{3}{98\cdot100}\)
\(\frac{3}{2.4}+\frac{3}{4.6}+....+\frac{3}{98.100}\)
\(=\frac{3}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)
\(\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{98.100}\)
\(=\frac{3}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{98.100}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)
Đặt \(A=\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{98.100}\)
\(A=\frac{3}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(A=\frac{3}{2}.\frac{49}{100}\)
\(A=\frac{147}{200}\)
Vậy \(A=\frac{147}{200}\)
Chúc bạn học tốt ~
\(a=\frac{2\cdot9\cdot8+3\cdot12\cdot10+4\cdot15\cdot12+...+98\cdot297\cdot200}{23\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+...+98\cdot99\cdot100}\)
Tính a2
Tách phần lử trên ra sao cho có thể rút gọn với phần ơn dưới