Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Escper Diabolic
Xem chi tiết
hong pham
22 tháng 7 2015 lúc 21:45

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

Trương Hữu Thắng
17 tháng 12 2016 lúc 20:51

còn câu b

pham van chuong
22 tháng 12 2016 lúc 21:18

a,

Vi A>5 ma A chia het cho 5

=>A co nhieu hon 2 uo

vay A la hop so 

bta thay 5^2chia het cho 25 , 5^3 chia hetcho 25 ,5^100 chia het cho 25 

nhung5 khong chia het cho 25 

=>A khong chia het cho 25 

=> A khong phai la so chinh phuong.

Nguyễn Thùy Linh
Xem chi tiết
Tai
27 tháng 7 2023 lúc 14:14

 

 Ta có: A = 5 + 52 + 5+....+ 5100

      ⇒�=(5+52)+(53+54)+...+(599+5100)

       ⇒�=5(1+5)+53.(1+5)+...+599.(1+5)

       ⇒�=5.6+53.6+...+599.6

              �=6.(5+53+...+599) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

Nguyễn Văn Anh
Xem chi tiết
Phạm Bùi Tuấn Phát
Xem chi tiết

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 5198)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

Trần Trọng Nguyên
Xem chi tiết

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

Trần Anh Dũng
Xem chi tiết

a. Ta có: A = 5 + 5^2  + 5^3 +....+ 5^100       

⇒A = 5 + 5^2 + 5^3 + 5^4 + ... + 5^99 + 5^100        ⇒A = 5^1 + 5 + 5^3 . 1 + 5 + ... + 5 ^9 . 1 + 5        

⇒A = 5.6 + 5 3 .6 + ... + 5^99 .6               

A = 6. 5 + 5 3 + ... + 5^99  chia hết cho 6. Vì A chia hết cho 6 nên A là hợp số

b,A không hải số chính phương

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

Trương Hoài Nhi
Xem chi tiết
VŨ HẢI MINH
17 tháng 12 2016 lúc 20:38

a) A là hợp số

b)A là số chính phương

Rem
23 tháng 3 2018 lúc 12:23

a,A là hợp số

b,A là số chính phương

chúc học tốt

phan nguyet khanh ly
2 tháng 1 2019 lúc 21:10

A,    Ta có: A= 5+52+53+54+...+599+5100

       =>    A=(5+52)+(53+54)+.......+(599+5100)

       =>    A= 5*(1+5)+53*(1+5)+........+599*(1+5)

       =>    A= 5*6+53*6+ ...... +599*6

          A= 6*(5+53+........+599) chia hết cho 6

Vì A chia hết cho 6 nên A là hợp số

hdhfegfgf
Xem chi tiết
Rainbow Dash
12 tháng 11 2016 lúc 19:42

ta có : A=5+5^2+...+5^100=......5 chia hết cho 5

A=5+5^2+...+5^100>5

suy ra: A là hợp số

 

Nguyễn Thanh Hằng
5 tháng 3 2017 lúc 19:29

b) Ta có :

5 chia hết cho 5

5^2 chia hết cho 5

....................................

5^100 chia hết cho 5

=> A chia hết cho 5, 5 là số nguyên tố (1)

Mà : 5 ko chia hết cho 5^2

5^2 chia hết cho 5^2

.............................................

5^100 chia hết cho 5^2

=> A ko chia hết cho 5^2 (2)

Từ (1) + (2) => A ko là số chính phương

Đông joker
Xem chi tiết
Thanh Hiền
18 tháng 11 2015 lúc 16:00

a) A là hộp số

b) Số A ko phải là số chính phương

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.