Chứng minh tỉ lệ thức a÷b=c÷d ta có thể suy ra tỉ lệ thức(b-a)÷b=(d-c)÷b
chứng minh. từ tỉ lệ thức a/b=c/d ta có thể suy ra tỉ lệ thức a+b/b=c+d/d
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
(Mik nghĩ zậy thui chứ ko chắc có trình bày đúng hay ko)
_Hok tốt_
!!!
chứng minh rằng từ tỉ lệ thức a/b=c/d ta có thể suy ra tỉ lệ thức a+b/a-b=c+d/c-d
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh từ tỉ lệ thức a/b=c/d ta có thể suy ra tỉ lệ thức (b-a)/b=(d-c)/d
vì \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow1-\frac{a}{b}=1-\frac{c}{d}\)
\(\Rightarrow\frac{b-a}{b}=\frac{d-c}{d}\)
Vậy \(\frac{b-a}{b}=\frac{d-c}{d}\)
Chứng minh tỉ lệ thức a b = c d (a - b ≠ 0, c - d ≠ 0) ta có thể suy ra tỉ lệ thức a + b a - b = c + d c - d
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0 , c - d khác 0 ) ta có thể suy ra tỉ lệ thức a+b/a-b = c + d/c-d
đặt x/2=y/5=k
=> x=2k, y=5k
ta có: 5kx2k=10
=> 10k^2=10
=> k^2=1
=> k=±1
với k=1=> x=2x1=2 ; y=1x5=5
với k=-1=> x=-1x2=-2 ; y=-1x5=-5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)
=>5x-2y=0
=>-(2y-5x)=0
=>2y-5x=0 (1)
xy=10 (2)
=>ta có:\(\int^{2y-5x=0}_{xy=10}\)
giải ra ta đc:x=±2;y=±5
Chứng minh rằng từ tỉ lệ thức a/b=c/d (a - b khác 0, c - d khác 0 ) ta có thể suy ra tỉ lệ thức( a+b/a-b ) = (c+d / c- d )
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
ta có a/b , c/d suy ra AB=CD
và ta có : AD + AB = BC + AB
hoặc 1 cách nữa là : A . ( B+D ) = B ( A.C) (1)
và đề cho B và D khác ko => B+D không bằng 0
=> từ ( 1) ta có đc 1 tỉ lệ thức :
=> A/B = A+C phần B+D
Chứng minh rằng từ tỉ lệ thức a/b=c/d (a-b khác o,c-d khác o) ta có thể suy ra tỉ lệ thức a+b/a-b =c+d/c-d
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(\text{Đ}PCM\right)\)
Ta có : a/b = c/d => a/c = b/d
Áp dụng tính chất dãy tính chất tỉ số bằng nhau :
a/c = b/d = a+b/c+d = a-b/c-d => a+b/a-b = c+d/c-d
Chứng minh rằng từ tỉ lệ thức: a/b=c/d ( a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức: a+b/a-b=c+d/c-d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh rằng từ tỉ lệ thức a/b=c/d (a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức a+b/a-b=c+d/c-d
Ta có :a/b = c/d suy ra a/c = b/d
áp dụng tính chất dãy tính chất tỉ số bằng nhau
a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d
Chứng minh rằng từ tỉ lệ thức a/b=c/d (a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức a+b/a-b = c+d/c-d