Tìm x: a) \(^{ }x^3\)-7x+6=0
b) \(^{ }x^2\)+\(^{ }y^2\)-6x+6y+18=0
1) x^3 - 7x - 6 =0 ; x^2 + y^2 - 6x + 6y +18 = 0.
2) Tìm đa thức f(x), biết rằng f(x) chia cho ( x - 3) thì dư 2, f(x) chia cho (x+4) thì dư 9, f(x) chia cho ( x^2 + x -12 ) thì được thương là ( x^2 +3) và còn dư.
3) Cho x+y=6 và x.y = -4. Tính giá trị của các biểu thức C = x^2 + y^2, D = x^3 + y^3, E= x^3 - y^3
\(x^3-7x-6=0\)
\(x^3-3x^2+3x^2+2x-9x-6=0\)
\(x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x+3\right).\left(x^2+3x+2\right)=0\Rightarrow\left(x-3\right).\left(x^2+3x+x+2\right)=0\)
\(\Rightarrow\left(x-3\right).\left(x+1\right).\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\text{hoặc }x=-2\)
Tìm x , y :
a) 2x^2 + 2y^2 - 2xy + 6x + 6y + 18 = 0
b) 10x^2 + y^2 - 6xy + 4x + 4 = 0
Tìm x , y :
a) 2x^2 + 2y^2 - 2xy + 6x + 6y + 18 = 0
b) 10x^2 + y^2 - 6xy + 4x + 4 = 0
1) x^3 - 7x - 6 =0 ; x^2 + y^2 - 6x + 6y +18 = 0.
2) Tìm đa thức f(x), biết rằng f(x) chia cho ( x - 3) thì dư 2, f(x) chia cho (x+4) thì dư 9, f(x) chia cho ( x^2 + x -12 ) thì được thương là ( x^2 +3) và còn dư.
3) Cho x+y=6 và x.y = -4. Tính giá trị của các biểu thức C = x^2 + y^2, D = x^3 + y^3, E= x^3 - y^3
Bài 1:
a: =>x^3-x-6x-6=0
=>x(x-1)(x+1)-6(x+1)=0
=>(x+1)(x-3)(x+2)=0
hay \(x\in\left\{-1;3;-2\right\}\)
b: \(\Leftrightarrow x^2-6x+9+y^2+6y+9=0\)
=>(x-3)^2+(y+3)^2=0
=>x=3 và y=-3
Bài 1: tìm x: a) (x+1)^3-(x-1)^3-6(x-1)^2=10. b) x^2+9y^2+6x-6y+10=0. c). X^2+2y^2+4x-20y+20=0. Bài 2: cho x-y=5. Tính GTBT: A=x(x+3)+y(y-3)-2xy+90. B=x^3-3xy(x-y)-y^3-x^2+2xy-y^2+40. C=x^2(x+3)-y^2(y-3)-9xy-3xy(x-y-1)-35. Bài 3: Tìm GTNN: A=3x^2+16x+21. B=7x^2-8x-1. C=4x^2+9y^2-12x+6y+2016. D=2x^2+9y^2-6xy-6x-12y+2016
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Mọi người giúp tui nghe😇😇😇
Bài1 Tìm x€ Z
a) xy - 2x + y =13
b)6x - 4x + 3y = 13
c)xy - 7x + 6y - 55 = 0
d)|2x -6| + 2x = 6
e)|3x -18| + 3x -18 = 0
f)|2x + 3| - |3x -8| = 0
g)|4x + 1| - |3x - 8| = 8
Mình cần gấp nhé (arigato gozaimasu)
xy là x nhân y nhé
Bài 1: Tìm x biết:
a) (x - 1)(x2 + x + 1) - x(x + 3)(x - 3) = 15
b) (x - 2)3 - (x - 3)(x2 + 3x + 9) + (6x + 1)2 = 18
c) 6(x + 2)2 - 2(x + 2)3 + 2(x - 2)(x2 + 2x + 4) = 1
Bài 2: Tìm x, y biết:
a) x2 + 4y2 + 6y - 12y +18 = 0
b) 5x2 + 9y2 - 12xy - 6x + 9 = 0
c) 2x2 + 2y2 + 2xy - 10x - 8y + 41 = 0
Bài 1 :
\(a)\)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+3\right)\left(x-3\right)=15\)
\(\Leftrightarrow\)\(x^3-1-x\left(x^2-3^2\right)=15\)
\(\Leftrightarrow\)\(x^3-1-x^3+9x=15\)
\(\Leftrightarrow\)\(9x=16\)
\(\Leftrightarrow\)\(x=\frac{16}{9}\)
Vậy \(x=\frac{16}{9}\)
Chúc bạn học tốt ~
Y+Z+1/X = X+Y+2/Y =X+Y-3=1/X+Y+Z
2. TÌM X BT
1+2Y/18 = 1+4Y/24 = 1+6Y/6X