Cho hình bình hành ABCD có AD=2AB; A=600. Gọi E,F lần lượt là trung điểm của BC và AD.
a) CM: AE vuông góc BF
b) CM: tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM: tứ giác BMCD là hình chữ nhật
d) CM: M,E,D thẳng hàng
cho hình bình hành ABCD biết AD=2AB=10cm. Tính độ dài vecto AD + vecto BD
Cho hình bình hành ABCD có AD = 2AB, góc A = 60°. Gọi E, F lần lượt là trung điểm của BC và AD a) Chứng minh tứ giác ABEF là hình bình hành b) Chứng minh tứ giác BFDC là hình thang cân
tham khảo
a) Ta có: (F là trung điểm của AD)
(E là trung điểm của BC)
mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)
nên AF=BE
Xét tứ giác AFEB có
AF//BE(AD//BC, F∈AD, E∈BC)
AF=BE(cmt)
Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: (gt)
mà (F là trung điểm của AD)
nên AB=AF
Hình bình hành AFEB có AB=AF(cmt)
nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AE⊥BF(đpcm)
b) Ta có: AFEB là hình thoi(cmt)
nên AF=FE=EB=AB và (Số đo của các cạnh và các góc trong hình thoi AFEB)
hay
Xét ΔFEB có FE=EB(cmt)
nen ΔFEB cân tại E(Định nghĩa tam giác cân)
Xét ΔFEB cân tại E có (cmt)
nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)
⇒(Số đo của một góc trong ΔFEB đều)
Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)
nên (hai góc đồng vị)
hay
Ta có: tia FE nằm giữa hai tia FB,FD
nên
(1)
Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)
nên (hai góc trong cùng phía bù nhau)
hay (2)
Từ (1) và (2) suy ra
Xét tứ giác BFDC có
FD//BC(AD//BC, F∈AD)
nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)
Hình thang BFDC có (cmt)
nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
cho hình bình hành ABCD có BC=2AB, M là trung điểm AD. Hạ CE vuông góc với AB. Chứng minh rằng góc EMD=3 góc AEM
Cho hình bình hành ABCD, có BC = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB. CMR: góc EMD = 3 góc AEM
Cho hình bình hành ABCD có BC =2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB. Chứng minh: góc EMD= 3 lần góc AEM?
A) ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE)
và MD//NC (AD//BC)
=> MNCD là hình bình hành (1)
MD=AD/2
MN=AB=AD/2
nên MD=MN (2)
từ (1)(2) => MNCD là hình thoi.
B) do MN//AB//CD(câu a)
và M là trung điểm AD
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC)
=> tam giác MEC cân tại M
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC
=> MF là đường phân giác của tam giác MEC
=> góc EMF=góc FMC
góc AEM=góc EMF(AB//MN)
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác)
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD
=> 2AEM=FMC+CMD
=> 2AEM=NMD=BAD(AB//MN)
cho hình bình hành abcd có cd=2ab. M là hình chiếu của c lên ab. i là trung điểm của ad. chúng minh rằng : tam giác mic cân , tam giác bic vuông
Cho hình bình hành ABCD có BC = 2AB và góc A = 60 độ . goị EF theo thứ tự là trung điểm BC,AD . lấy điểm I sao cho B là trung điểm của AI
Đề bài yêu cầu gì vậy bạn?
Cho hình bình hành ABCD có BC=2AB. M là trung điểm của AD, CE vuông góc với AB (e thuộc AB). Chứng minh góc EMD = 3 lần góc AEM.
Kẻ MH (H thuộc BC) song song AB cắt EC tại I. Ta có ngay H là trung điểm BC. Do đó I là trung điểm EC. Suy ra tam giác MIE = tam giác MIC. Suy ra góc EMI=CMI. Và AEM=EMI (so le trong) (1)
Lại có tam giác DMC cân tại D nên DMC=DCM, và DCM=CMI (so le trong) (2).
Từ (1) và (2), suy ra: EMD = EMI+CMI+DMC= 3AEM.
cho hình bình hành ABCD có AD=2AB,góc a=60 độ.gọi E,F lần lượt trung điểm BC và AD.
Lấy M đối xứng của A qua B. chứng minh tứ giác BMCD la hình chữ nhật suy ra M,E,D thẳng hàng
Xét tứ giác BMCD có
BM//CD
BM=CD
Do đó: BMCD là hình bình hành
Suy ra: Hai đường chéo BC và MD cắt nhau tại trung điểm của mỗi đường
mà E là trung điểm của BC
nên E là trung điểm của MD
hay M,E,D thẳng hàng
Cho hình bình hành ABCD có AD=2AB,\(\widehat{A}=60^o\). Gọi P,Q lần lượt là trung điểm của BC và AD
a) Chứng minh tứ giác ABPQ là hình bình hành
b)Chứng minh \(AP\perp BQ\)
c) Chứng minh tứ guacs BQDC là hình thang cân
Do P là trung điểm của BC nên :
=) CP=BP=\(\frac{BC}{2}\)
Do Q là trung điểm của AD nên:
=) AQ=QD=\(\frac{A\text{D}}{2}\)
Mà AD=BC (Tính chất hình bình hành)
=) BP=AQ=PC=QD (1)
Mà 2 cạch AP và BP lại song song với nhau (2)
TỪ (1)và(2) =) Tứ giác ABPQ là hình bình hành
b) Do AD=2AB =) AB =\(\frac{A\text{D}}{2}\)=) AQ=AB
Mà AQ=BP (Tính chất hình bình hành)
Và AB=PQ (Tính chất hình bình hành)
=) AB=BP=PQ=AQ
=) Tứ giác ABPQ là hình thoi
=) 2 đường chéo AP và BQ vuông góc với nhau
Hay AP \(\perp\)BQ
c) Do tứ giác ABPQ là hình bình hành nên =) \(\widehat{A}\) =\(\widehat{P}\)= \(60^0\)
Xét tam giác BPQ có :
QP=PB (chứng minh trên )
\(\widehat{P}\)= \(60^0\)
=) Tam giác BPQ là tam giác đều
=) \(\widehat{B}\) =\(60^0\) (1)
Mà \(\widehat{A}\) =\(\widehat{C}\)=\(60^0\)(Do ABCD là hình bình hành ) (2)
Và QP lại song song với BC =) BQDC là hình thang (3)
Tu (1) ;(2) va (3) =) BQDC là hình thang cân