Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kang tae oh
Xem chi tiết
Hà Vy
Xem chi tiết
Phương An
29 tháng 10 2016 lúc 22:02

a.

AM là đường trung tuyến của tam giác ABC cân tại A

=> AM là đường cao của tam giác ABC cân tại A

=> AM _I_ BC

hay AMC = 900

I là trung điểm của AC (gt)

I là trung điểm của MN (M đối xứng N qua I)

=> AMCN là hình bình hành

mà AMC = 900

=> AMCN là hình chữ nhật

K là trung điểm của AB (gt)

M là trung điểm của BC (AM là đường trung tuyến của tam giác ABC)

=> KM là đường trung bình của tam giác ABC

=> KM = AC/2

mà IC = AC/2 (I là trung điểm của AC)

=> KM = IC

mà KM // IC (KM là đường trung bình của tam giác ABC)

=> MKIC là hình bình hành

b.

AN = MC (AMCN là hình chữ nhật)

mà MC = BM (M là trung điểm của BC)

=> AN = BM

mà AN // BM (AMCN là hình chữ nhật)

=> ANMB là hình bình hành

mà E là trung điển của AM

=> E là trung điểm của BN

c.

AMCN là hình vuông

<=> Tam giác ABC vuông cân tại A

PHẠM NGUYỄN LAN ANH
10 tháng 11 2016 lúc 21:28

ko biết

Giọt Nắng
21 tháng 12 2016 lúc 13:28

bài giải của bạn phương an có đúng k ạ

 

x Nguyễn Thu Thủy x
Xem chi tiết
6a1 is real
2 tháng 12 2017 lúc 12:19

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Trịnh Quỳnh Nhi
2 tháng 12 2017 lúc 12:20

a. Xét tam giác ABC có BM=MC; AI=IC

=> IM là đường trung bình của tam giác ABC => IM//AB; IM=1/2AB=AK

Xét tứ giác AKMI có IM//AK; IM=AK

=> AKMI là hbh

Do AB=AC=> 1/2AB=1/2AC=> AK=AI

Xét hbh AKMI có AK=AI

=> AKMI là hình thoi

b. •Xét tứ giác AMCN có AC, MN là 2 đường chéo cắt nhau tại I và AI=IC MI=IN

=> AMCN là hbh

Do tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao

=> AMC=90*

Hbh AMCN có AMC=90*

=> AMCN là hcn

• Xét tam giác ABC có AK=BK; BM=MC

=> KM là đường trung bình của tam giác ABC => KM//AC hay KM//IC; KM=1/2AC=IC

Xét tứ giác MKIC có KM//IC; KM=IC

=> MKIC là hbh

c. Do AMCN là hcn nên NAM=90*; AN=MC

Từ NAM=90*=> ANvgAM mà BMvgAM

=> AN//BM

Từ AN=MC mà MC=BM => AN=BM

Xét tứ giác ABMN có AN=BM; AN//BM

=> ABMN là hbh => AM và BN cắt nhau tại trung điểm mỗi đoạn 

Mà E là trung điểm của AM

=> E là trung điểm của BN

d. Để AMCN là hình vuông thì AC vg MN

Xét tam giác vuông AMC có MI vừa là trung tuyến vưaf là đường cao

=> AMC vuông cân tại M => ACM=45*=ABM

=> tam giác ABC vuông cân tại A

Pham Hoang Tu Anh
Xem chi tiết
Không Có Tên
5 tháng 1 2017 lúc 19:44

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A

Linhh Chii
Xem chi tiết
nguyen huong
21 tháng 11 2016 lúc 21:03

a, có t.g ABC cân tại A có AM là đường trung tuyến

-> AM vuông góc với BC

Xet tg AMB

co KA=KB (GT)

-> MK=AK (=1/2AB)(1)

Chứng minh tương tự đối với tg AMC thì MI=AI (2)

lại có AB=AC

->AK=AI(3)

(1);(2);(3) -> AK=KM=MI=IA

-> tứ giác AKMI là hình thoi

nguyen huong
21 tháng 11 2016 lúc 21:08

b, co IA=IC

IM=IN (VI N đối xứng với M qua I)

-> Tứ giác AMCN là hình thoi

Mà AM vuông góc BC (theo a)

-> tứ giác AMCN là hình vuông

Xet tg ABC co KA=KB

IA=IC

-> KI là đường trung bình của tg ABC

-> KI//BC

KI=1/2 BC

Ma MC=1/2MC

-> tu giac KICM la hinh binh hanh

nguyen huong
21 tháng 11 2016 lúc 21:18

d, Có tứ giác AMCN là hình chữ nhật (chứng minh trên)

để AMCN là hình vuông thì

<-> AM=MC

<-> tg AMC cân tại M

ma tg AMC vuong tai M

<-> tg AMC vuong can

<-> goc C=450

mà tg ABC cân tại A

<-> tg ABC vuông cân tại A

Nguyễn Hữu Trí
Xem chi tiết
Pokemon
Xem chi tiết
Đặng Châm
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 0:43

a: AM=BC/2=3cm

b: Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

MA=MC

Do đó: AMCN là hình thoi

Nguyễn Tuấn Anh
Xem chi tiết