Cho x,y,z thuộc Z và x+y+z chia hết cho 6 . Chứng minh : x3+y3+z3 chia hết cho 6
Cho x ; y thuộc z và ( x-y ) chia hết cho 6
Chứng minh :
a) ( x + 11y ) chia hết cho 6
b) (x - 13y ) chia hết cho 6
mn ơi , giải dùm mik nhé
mik xin các bạn giải dùm mik trog hôm nay ngày 22 /03 nhé chứ ngày mai mik nộp rùi nhé
a,ta có: x+11y=(x-y)+12y chia hết 6 (vì x-y chia hết 6 và 12y chia hết 6)
b,ta có:
x-13y=(x-y)-12y chia hết cho 6( vì x-y chia hết cho 6 và 12y chia hết cho 6)
Cho A = ( x+y )(y+z)(z+x) + xyz
Chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A - 3xyz chia hết cho 6
Cho x,y,z>=-1 và x3 +y3 +z3 =0.Chứng minh rằng x+y+z<1
Cho 3 số nguyên x, y, z có tổng chia hết cho 6.
Chứng minh: M = (x + y)(y + z)(x + z) - 2000xyz chia hết cho 6
Cho đa thức A=(x+y)(y+z)(z+x) + xyz
a) Phân tích A thành nhân tử
b) Chứng minh nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A - 3xyz chia hết cho 6
Chứng minh :
x +y+z chia hết cho 6<=> x^3+ y^3+ z^3 chia hết cho 6
Chứng minh rằng : \(x^3+y^3+z^3\)
chia hết cho 6 khi và chỉ khi x+y+z chia hết cho 6
\(ĐK:x;y;z\in Z\)
Xét hiệu: (x3 + y3 + z3) - (x + y + z)
= (x3 - x) + (y3 - y) + (z3 - z)
= x.(x2 - 1) + y.(y2 - 1) + z.(z2 - 1)
= x.(x - 1).(x + 1) + y.(y - 1).(y + 1) + z.(z - 1).(z + 1)
Dễ thấy x.(x - 1).(x + 1); y.(y - 1).(y + 1); z.(z - 1).(z + 1) đều là tích 3 số nguyên liên tiếp nên 3 tích này đều chia hết cho 2 và 3
Mà (2;3)=1 nên mỗi tích này chia hết cho 6
=> (x3 + y3 + z3) - (x + y + z) chia hết cho 6
Như vậy nếu x3 + y3 + z3 chia hết cho 6 thì x + y + z chia hết cho 6 và ngược lại (đpcm)
bài này mà lớp 7 thì khó đây , nhưng lớp 8,9 lại ưa dễ
Toán lớp 7 mà dùng hằng đẳng thức thì nó hiểu gì hả bà nội
Cho P=(x+y).(y+z).(z+x)+xyz
CM nếu x,y,z thuộc Z và x+y+z chia hết cho 6 thì Q=P-3xyz chia hết cho 6
Lời giải:
Biến đổi:
\(P=(x+y)(y+z)(x+z)+xyz=xy(x+y)+yz(y+z)+xz(z+x)+3xyz\)
\(\Leftrightarrow P=(x+y+z)(xy+yz+xz)\)
Với \(x+y+z\vdots 6\Rightarrow P\vdots 6(1)\)
Giả sử \(x,y,z\) đều là các số nguyên lẻ, khi đó \(x+y+z\) lẻ thì không thể chia hết cho $6$ (vô lý)
Do đó , phải tồn tại ít nhất một trong ba số \(x,y,z\) là số chẵn
\(\Rightarrow 3xyz\vdots 6(2)\)
Từ \((1),(2)\Rightarrow Q=P-3xyz\vdots 6\)
Ta có đpcm
Cho x,y,z là các số nguyên thoả mãn x+y+z chia hết 6
Chứng minh: (x+y)(y+z)(x+z)-2xyz chia hêt 6