Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Điền
Xem chi tiết
Lê Bảo Nghiêm
Xem chi tiết
Cao Thành Danh
11 tháng 1 2021 lúc 22:54

Lê Quốc Vương
Xem chi tiết
Nguyễn Nhật Minh
30 tháng 12 2015 lúc 12:14

Bài này thắng làm  rồi 

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 8 2021 lúc 20:01

Đặt \(x+2y+1=a\)

\(P=a^2+\left(a+4\right)^2=2a^2+8a+16=2\left(a+2\right)^2+8\ge8\)

Tiến Dũng Đặng
Xem chi tiết
Kiệt Nguyễn
27 tháng 1 2021 lúc 19:49

Áp dụng bất đẳng thức Cauchy, ta có: \(\sqrt{x\left(2x+y\right)}=\frac{1}{\sqrt{3}}.\sqrt{3x\left(2x+y\right)}\le\frac{5x+y}{2\sqrt{3}}\)

Tương tự: \(\sqrt{y\left(2y+x\right)}\le\frac{5y+x}{2\sqrt{3}}\)

\(\Rightarrow\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\le\frac{6\left(x+y\right)}{2\sqrt{3}}=\frac{3\left(x+y\right)}{\sqrt{3}}\)\(\Rightarrow P=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\ge\frac{x+y}{\frac{3}{\sqrt{3}}\left(x+y\right)}=\frac{1}{\sqrt{3}}\)

Đẳng thức xảy ra khi x = y

Khách vãng lai đã xóa
trần xuân quyến
Xem chi tiết
Thiên Hàn Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:27

\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)

\(C_{min}=4\) 

phạm thanh nga
Xem chi tiết
coolkid
13 tháng 1 2020 lúc 23:30

\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)

\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)

\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)

Dấu "=" xảy ra tai x=y=1/2

Khách vãng lai đã xóa
Hùng Bùi Huy
Xem chi tiết
Nguyễn Hưng Phát
18 tháng 4 2018 lúc 21:27

Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=\frac{6^2}{2}=18\)

Nên GTNN của P là 18 đạt được khi \(x=y=\frac{1}{2}\)

Hùng Bùi Huy
18 tháng 4 2018 lúc 21:33

bạn thật là thông minh quá đi^^

Nguyễn Chánh Hiệu
27 tháng 4 2018 lúc 10:19

Cho tớ hỏi: vì sao bạn chưng minh được a^2+b^2>=(a+b)^2/2 vậy . Mình không biết rõ chỗ chứng minh bất đẳng thức này