Chứng minh rằng biểu thức
\(M=\left(\frac{1}{3}x-y\right)\left(x^2+3xy+9y^2\right)+9y^3-\frac{1}{3}x^3\) có giá trị không phụ thuộc x,y
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến (với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)
Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)
\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)
\(=\)\(\frac{5}{3}\)
ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)
\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến
a) \(y\left(x^2-y^2\right)\)\(\left(x^2+y^2\right)\)\(-y\left(x^4-y^4\right)\)
b) \(\left(\frac{1}{3}+2x\right)\)\(\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)\)- \(\left(8x^3-\frac{1}{27}\right)\)
c) \(\left(x-1\right)^3\)- ( x - 1 ) \(\left(x^2+x+1\right)\)- 3 ( 1 - x ) x
a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)
a) y( x2 - y2 )( x2 + y2 ) - y( x4 - y4 ) = y[ ( x2 )2 - ( y2 )2 ] - y( x4 - y4 ) = y( x4 - y4 ) - y( x4 - y4 ) = 0
b) ( 1/3 + 2x )( 4x2 - 2/3x + 1/9 ) - ( 8x3 - 1/27 ) = ( 1/3 + 2x )[ ( 2x )2 - 2.1/3x + (1/3)2 ] - 8x3 + 1/27
= [ ( 2x )3 + ( 1/3 )3 ] - 8x3 + 1/27
= 8x3 + 1/27 - 8x3 + 1/27
= 2/27
c) ( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x
= ( x3 - 3x2 + 3x - 1 ) - ( x3 - 1 ) - ( 3x - 3x2 )
= x3 - 3x2 + 3x - 1 - x3 + 1 - 3x + 3x2
= 0
Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biến x,y
\(\frac{2}{xy}\div\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
Chứng minh với mọi x, y khác 0 thì giá trị của biểu thức \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
không phụ thuộc vào giấ trị của biến
Chứng minh giá trị của biểu thức không phụ thuộc vào biến
\(\left(\frac{y}{x^2-xy}-\frac{x}{xy-y^2}\right):\left(\frac{1}{x}+\frac{1}{y}\right)\)
chứng minh đẳng thức sau
a,\(\frac{x^2+3xy}{x^2-9y^2}+\frac{2x^2-5xy-3y^2}{6xy-x^2-9y^2}=\frac{x^2+xz+xy+yz}{3yz-x^2-xz+3xy}\)
b,\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Chứng minh : giá trị của biểu thức sau không phụ thuộc vào x
\(\frac{x}{2}.\left(1-2x^2\right)-\frac{3}{2}.\left(\frac{x}{3}-\frac{2}{3}x^3+1\right)\)
\(=\frac{x}{2}-\frac{2x^3}{2}-\frac{3x}{6}+\frac{6x^3}{6}-\frac{3}{2}\)
\(=\frac{x}{2}-x^3-\frac{x}{2}+x^3-\frac{3}{2}=\frac{3}{2}\)
Vậy giá trị biểu thức không phụ thuộc vào giá trị biến x
Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến: a) -x^3+(x - 3)[(2x+1)^2 - 2( 3/2 x^2 + 1/2 x - 4)]
b) (x+2y)^3 -(x-3y)(x^2+3xy+9y^2 )-6y(x^2+2xy - 35/6 y^2 )
\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)
\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)
1/ Tính
a)\(A=\frac{35^3+13^3}{48}-35.13\)
b)\(B=\frac{68^3-52^3}{16}+68.52\)
2/ Chứng minh rằng giá trị của biểu thức sao không phụ thuộc vào giá trị của biến
a/ \(y\left(x^2-y^2\right)\left(x^2+y^3\right)-y\left(x^4-y^2\right)\)
b/ \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{4}\right)-\left(8x^3-\frac{1}{27}\right)\)
c/ \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
Giải nhanh nha!