Cho tam giác ABC nhọn, AC>AB, có M trung điểm BC. Lấy D đối xứng A qua M, E đối xứng A qua BC. Cm EC^2=EB^2+BC*DE
1. cho tam giác ABC , gọi m là đường trung trực của BC . Vẽ điểm D đối xứng với A qua m .
a, tìm các đoạn thẳng đối xứng với AB , AC qua m
b, Xác định dạng tứ giác ABCD
2. Cho tam giác ABC . Trên đường thẳng d lấy điểm M ≠≠A . C/m : AB + AV < BM+MC
3. Cho tam giác nhọn ABC , M thuộc cạnh BC , gọi D là điểm đối xứng với M qua AB , gọi E là điểm đối xứng với M qua AC , gọi I , K là giao điểm của DE với AB , AC . c/m : MA là tia phân giác của góc IMK
help me
Bài 2 : c/m là AB+AC<BM+MC nha mấy bạn giúp mk vs
Cho tam giác ABC vuông tại A có M là trung điểm của BC lấy E đối xứng M qua AC và F đối xứng M qua AB a Chứng minh E đối xứng F qua A
Gọi giao điểm của MF với AB là K, giao điểm của ME với AC là N
E đối xứng M qua AC
=>AC là đường trung trực của ME
=>AC vuông góc với ME tại trung điểm của ME
=>AC vuông góc với ME tại N và N là trung điểm của ME
M đối xứng với F qua AB
=>AB là đường trung trực của MF
=>AB vuông góc với MF tại trung điểm của MF
mà AB cắt MF tại K
nên AB vuông góc MF tại K và K là trung điểm của MF
Xét ΔAME có
AN là đường trung tuyến
AN là đường cao
Do đó: ΔAME cân tại A
Xét ΔAMF có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAMF cân tại A
ΔAME cân tại A
mà AC là đường cao
nên AC là phân giác của \(\widehat{EAM}\)
=>\(\widehat{EAM}=2\cdot\widehat{MAC}\)
ΔAMF cân tại A
mà AB là đường cao
nên AB là phân giác của \(\widehat{MAF}\)
=>\(\widehat{FAM}=2\cdot\widehat{BAM}\)
AM=AF
AM=AE
Do đó: AF=AE
\(\widehat{EAM}+\widehat{FAM}=\widehat{EAF}\)
=>\(\widehat{EAF}=2\cdot\widehat{BAM}+2\cdot\widehat{CAM}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)\)
\(=2\cdot90^0=180^0\)
=>E,A,F thẳng hàng
mà AF=AE(cmt)
nên A là trung điểm của EF
=>F đối xứng E qua A
1.Cho hình thang vuông ABCD (góc A bằng góc B bằng 90 độ). M là trung điểm đối xứng với B qua AD, I là giao điểm của CH và AD. Chứng minh góc AIB = góc DIC
2.Cho A nhọn tam giác ABC có góc A bằng 60 độ, trực tâm H. M là điểm đối xứng qua BC. Chứng minh tam giác BHC bằng tam giác BMC
3. Cho tam giác ABC cân tại A. M là trung điểm của BC. Trên AB lấy điểm D, trên AC lấy điểm E sao cho BD bằng CE
4. Cho tam giác nhọn ABC có góc A bằng 70 độ, điểm D thuộc BC. E là điểm đối xúng với D qua AB, F là điểm đối xứng với D qua AC. Đường thẳng EF cắt AB và AC, theo thứ tự tại M, N. Tính các góc của tam giác AEF ?
Các bạn vẽ hình cho mình với nha
Cho tam giác nhọn ABC, điểm M thuộc đoạn BC. Gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng với M qua AC, Tìm vị trí của M trên BC để độ dài DE là nhỏ nhất.
Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)
=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.
=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)
Mà AD = AE = AM
=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)
\(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)
=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC
cho tam giác abc có 3 góc nhọn gọi M là điểm bất kì trên cạnh BC. gọi D là điểm đối xứng M qua AB,E là điểm đối xứng M qua AC. Gọi I là giao điểm của DE với AB, K là giao điểm của DE với AC
a) CM; AD=AE
b) CM: góc MA là phân giác của góc YMK
Cho tam giác ABC nhọn (AB<AC). M là điểm bất kì trên BC. Gọi D đối xứng với M qua AB ; E đối xứng với M qua AC
a) Chứng minh góc DAE không phụ thuộc vào vị trí diểm M trên BC
b) Tìm vị trí của M trên BC để DE nhỏ nhất
Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. M là trung điểm của BC; D đối xứng với A qua M
a.C/m : ABCD là hình chữ nhật
b. tính diện tích ABCD
c. Kẻ AH vuông góc BC ( H thuộc BC ). Gọi E là điểm đối xứng với H qua AH. C/m : HM // DE, và HM = 1/2 DC
Có DM đối xứng vs AM =>DM=AM
M là trung điểm BC=>BM=CM
xét tứ giác ABCD có BC và AD cắt nhau tại M
Mà DM=AM . BM=CM => ABCD là hình bình hành ( dấu hiệu)
A vuông ( gt) => hình bình hành ABCD là hình chữ nhât ( dấu hiệu)
B) diện tích hình chữ nhât ABCD là
6x8=48
C)
bạn xem lại đề câu C đi hình như sai
Cho tam giác ABC nhọn AB nhỏ hơn AC Gọi E F lần lượt là trung điểm AB AC a Chứng minh AE song song với BC b lấy điểm N đối xứng e qua f chứng minh c g = be = AB a Cho tam giác ABC nhọn có AB E là trung điểm của AB AC a chứng minh de song song với BC lấy D là giao điểm B E C D Gọi M N là trung điểm của GB và GC Chứng minh tứ giác DENM là hình bình hành
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình củaΔBAC
Suy ra: EF//BC
Cho Δ ABC vg tại A,AB=6cm,AC=8cm.Gọi M là trung điểm của đoạn thẳng BC.Điểm D đối xứng vs A qua M
a,Cm tứ giác AbDC là hcn, Tính S h.c.n ABCD
b,Kẻ AH vg BC(H ϵ BC).Gọi E là điểm đối xứng vs A qua H.CM HM//DE và HM= !/2 DE
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật