Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
em gà nhất lớp
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Tất Đạt
25 tháng 7 2018 lúc 19:51

Đặt \(\hept{\begin{cases}2x+y+z=4a\\2y+x+z=4b\\2z+x+y=4c\end{cases}\Rightarrow}\hept{\begin{cases}x=3a-b-c\\y=3b-c-a\\z=3c-a-b\end{cases}}\)thay vào biểu thức đó

\(\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\)

\(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)

\(=\frac{3}{4}-\frac{b-c}{4a}+\frac{3}{4}-\frac{c-a}{4b}+\frac{3}{4}-\frac{a-b}{4c}\)

\(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)

Áp dụng BĐT sau: \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\ge6\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\ge\frac{6}{4}\)

\(\Leftrightarrow\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\le\frac{3}{4}\)

Từ đó ta có: \(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{3}{4}\)(đpcm).

Dấu "=" xảy ra <=> x=y=z.

MP40
Xem chi tiết
zZz Cool Kid_new zZz
19 tháng 7 2020 lúc 16:08

Theo Cauchy Schwarz:

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự:

\(\frac{y}{2y+z+x}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right);\frac{z}{2z+y+x}\le\frac{1}{4}\left(\frac{z}{z+y}+\frac{z}{z+x}\right)\)

Cộng lại:

\(D\le\frac{3}{4}\left(đpcm\right)\)

Khách vãng lai đã xóa
headsot96
Xem chi tiết
Phùng Minh Quân
25 tháng 7 2019 lúc 9:38

từ câu a) ta có: \(\orbr{\begin{cases}x=y+1\\x=y-1\end{cases}}\) và \(\hept{\begin{cases}x-y=t-z\\y=t\end{cases}}\) (3) 

+) Với \(x=y+1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y+1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z+1\\y=t\end{cases}}\)

\(\Rightarrow\)\(x=y+1=z+2\) ( x,y,z là 3 số nguyên liên tiếp ) 

+) Với \(x=y-1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y-1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z-1\\y=t\end{cases}}\)

\(\Rightarrow\)\(x=y-1=z-2\) ( x,y,z là 3 số nguyên liên tiếp ) 

Phùng Minh Quân
25 tháng 7 2019 lúc 9:30

\(x+z=y+t\)\(\Leftrightarrow\)\(x^2+z^2+2xz=y^2+t^2+2yt\) (1) 

Mà \(xz+1=yt\)\(\Leftrightarrow\)\(2xz+2=2yt\)

(1) \(\Leftrightarrow\)\(x^2+z^2+2yt=y^2+t^2+2xz+4\)

\(\Leftrightarrow\)\(\left(x-z\right)^2-\left(y-t\right)^2=4\)

\(\Leftrightarrow\)\(\left(x-z-y+t\right)\left(x-z+y-t\right)=4\) (2) 

Lại có: \(x+z=y+t\)\(\Rightarrow\)\(\hept{\begin{cases}x-y=t-z\\x-t=y-z\end{cases}}\)

(2) \(\Leftrightarrow\)\(\left(x-y\right)\left(x-t\right)=1\)

TH1: \(\hept{\begin{cases}x-y=1\\x-t=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\x=t+1\end{cases}}\Leftrightarrow y=t\)

TH2: \(\hept{\begin{cases}x-y=-1\\x-t=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-1\\x=t-1\end{cases}}\Leftrightarrow y=t\)

Phạm Thị Nhập
Xem chi tiết
Hà Lê
22 tháng 7 2019 lúc 13:44

sao ko ai trả lời vậy

ABC
Xem chi tiết
tth_new
24 tháng 2 2020 lúc 19:33

Trước hết ta chứng minh bổ đề sau đây: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{9\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\). Đặt P = VT - VP.

(đây là phân tích của một người khác, không phải của em)

Do đó \(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{9\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}=\frac{27}{\sqrt{\left(x+y+z\right)^2.\left(x+y+z\right)^2}}\)

\(\ge\frac{27}{\sqrt{3\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}}=\frac{9}{x+y+z}\)

Đẳng thức xảy ra khi x = y = z = 1

P/s: Em không chắc lắm!

Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 6 2020 lúc 19:58

Theo giả thiết: \(x^2+y^2+z^2=3\Rightarrow2\left(xy+yz+zx\right)=\left(x+y+z\right)^2-3\)

Theo BĐT Bunyakovsky dạng phân thức, ta có:

\(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x^2}{xy}+\frac{y^2}{yz}+\frac{z^2}{zx}\)\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\)

Đến đây, ta cần chỉ ra rằng \(\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\ge\frac{9}{x+y+z}\)(*)

Ta có: \(xy+yz+zx>0\Leftrightarrow\left(x+y+z\right)^2\ge x^2+y^2+z^2=3\)

\(\Rightarrow x+y+z>\sqrt{3}\)

Đặt \(x+y+z=t>\sqrt{3}\). Khi đó (*) trở thành \(\frac{2t^2}{t^2-3}\ge\frac{9}{t}\Leftrightarrow\frac{\left(t-3\right)^2\left(2t+3\right)}{t\left(t^2-3\right)}\ge0\)(đúng với mọi \(t>\sqrt{3}\))

Đẳng thức xảy ra khi \(t=3\)hay x = y = z = 1

Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 6 2020 lúc 20:13

Cho sửa dòng 5, \(\left(x+y+z\right)^2>x^2+y^2+z^2=3\)chứ không phải \(\ge\)nha!!!

Tự nhiên làm \(\ge\)xong suy ra \(x+y+z>\sqrt{3}\), dạo này hay nhầm kinh

Khách vãng lai đã xóa
Thị Lương Hồ
Xem chi tiết
Kiệt Nguyễn
12 tháng 9 2020 lúc 10:41

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0 

Khách vãng lai đã xóa
Trần Thụy Bảo Trân
Xem chi tiết
doanhoangdung
Xem chi tiết
Chirikatoji
3 tháng 4 2016 lúc 22:05

Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t

-Chứng minh biểu thức nhỏ hơn 2 .

Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z

A<x+t+y+z+z+x+t+y/x+y+t+z

A<2(x+t+y+z)/x+y+t+z

A<2

-Chứng minh biêu thức lớn hơn 1

A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z

A>x+y+t+z/z+x+y+t

A>1

Mà 1<A<2

Suy ra A không phải là STN

Có gì sai thì bạn sửa nhé