Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguễn thị minh ánh
Xem chi tiết
vu duc duy
24 tháng 7 2016 lúc 9:11

can bac 2 cua 2 la 1so vo ti nen cong voi a bat ki (a thuoc Z+)thi a van la so vo ti

Nguyễn Minh Hoàng
Xem chi tiết
Phạm Hà Bảo Trân
Xem chi tiết
Phạm Hà Bảo Trân
14 tháng 9 2017 lúc 16:02

thuộc I nha m.n

Vi Linh Chi
Xem chi tiết
o0o I am a studious pers...
5 tháng 8 2016 lúc 15:49

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

Minh Thư
8 tháng 10 2019 lúc 20:53

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

Thi Bùi
17 tháng 7 2021 lúc 18:25

phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí

b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a

bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí

c bình phương lên => căn 2=A-1 thuộc Q => vô lí

d tương tự căn 3=Bn-mn thuộc Q => vô lí

chúc bạn học tốt

Khách vãng lai đã xóa
Anh Lưu Đức
Xem chi tiết
Nữ Hoàng Bóng Đêm
18 tháng 1 2018 lúc 21:49

Giả sử căn bậc 2 của 2 là 1 số hữu tỉ ( nếu kết quả ra số hữu tỉ thì điều giả sử là đúng còn nếu ko thì điều giả sử là sai) 
Vậy căn 2 = a/b 
với a,b thuộc Z, b khác 0 và a/b là 1 phân số tối giản. 
bình phương hai vế ta được: 2=a^2/b^2 
suy ra: a^2=2b^2 
Vậy a^2 là số chẵn, suy ra a là số chẵn. 
nên a=2m, m thuộc Z(m là 1 tham số), ta được: 
(2m)^2=a^2=2b^2 
suy ra: b^2=(2m)^2/2=2m^2 
Vậy b^2 là số chẵn suy ra b là số chẵn. 
nên b=2n, n thuộc Z(n là tham số) 
Như vậy: a/b = 2m/2n ko phải là phân số tối giản, trái với giả sử ban đầu. 
Vậy căn bậc 2 của 2 là 1 số vô tỉ. 

Một số vô tỉ cộng một số nguyên thì ra số vô tỉ

\(\sqrt[]{2}\)+a là số vô tỉ

PHẠM ĐĂNG KHÔI
Xem chi tiết
Lê Tự Phong
Xem chi tiết
gì cũng được
Xem chi tiết
Lilian Art
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 16:16

a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ

---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0

\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn

Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)

\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn

Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm

b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ

---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0

\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)

Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)

\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)

\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)

\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm

(Bài dài quá, giải mệt vler !!)

Khách vãng lai đã xóa