điền vào chỗ chấm (...)
R | d | Vị trí tương dưới của đường thẳng và đường tròn |
5cm | 2cm | ............................... |
4cm | ...... | tiếp xúc nhau |
3dm | 7dm | ................................. |
Điền vào các chỗ trống (...) trong bảng sau (R là bán kính của đường tròn, d là khoảng cách từ tâm đến đường thẳng):
R | d | Vị trí tương đối của đường thẳng và đường tròn |
5cm | 3cm | ... |
6cm | ... | Tiếp xúc nhau... |
4cm | 7cm | ... |
Từ hệ thức giữa d và R ta có bảng:
R | d | Vị trí tương đối của đường thẳng và đường tròn |
5cm | 3cm | Cắt nhau (d < R) |
6cm | 6cm | Tiếp xúc nhau (d = R) |
4cm | 7cm | Không giao nhau (d > R) |
Điền vào các chỗ trống (...) trong bảng sau (R là bán kính của đường tròn, d là khoảng cách từ tâm đến đường thẳng):
R | d | Vị trí tương đối của đường thẳng và đường tròn |
5cm | 3cm | ... |
6cm | ... | Tiếp xúc nhau... |
4cm | 7cm | ... |
R | d | Vị trí tương đối của đường thẳng và đường tròn |
5cm | 3cm | Cắt nhau (d < R) |
6cm | 6cm | Tiếp xúc nhau (d = R) |
4cm | 7cm | Không giao nhau (d > R) |
1.Cho đoạn thẳng HK = 5cm. Vẽ đường tròn tâm H, bán kính 2cm và đường tròn tâm K, bản kính 3cm.
a) Xác định vị trí tương đối của hai đường tròn trên.
b) Trên đoạn thẳng HK lấy điểm D sao cho IK = 1cm. Vẽ đường thẳng đi qua I và vuông góc với HK, đường thẳng này cắt đường tròn (K) tại hai điểm P, Q. Tính diện tích tứ giác HPKQ.
Nêu các vị trí tương đối của đường thẳng và đường tròn. Ứng với mỗi vị trí đó, viết hệ thức giữa d (khoảng cách từ tâm đến đường thẳng) và R (bán kính của đường tròn).
Vị trí tương đối của đường thẳng và đường tròn | Số điểm chung | Hệ thức giữa d và R |
---|---|---|
Đường thẳng và đường tròn cắt nhau | 2 | d < R |
Đường thẳng và đường tròn tiếp xúc nhau | 1 | d = R |
Đường thẳng và đường tròn không giao nhau | 0 | d > R |
Nêu các vị trí tương đối của đường thẳng và đường tròn. Ứng với mỗi vị trí đó, viết hệ thức giữa d (khoảng cách từ tâm đến đường thẳng) và R (bán kính của đường tròn)
Vị trí tương đối của đường thẳng và đường trònSố điểm chungHệ thức giữa d và R
Đường thẳng và đường tròn cắt nhau | 2 | d < R |
Đường thẳng và đường tròn tiếp xúc nhau | 1 | d = R |
Đường thẳng và đường tròn không giao nhau | 0 | d > R |
Điền vào các ô trống trong bảng, biết rằng hai đường tròn (O; R) và (O'; r) có OO' = d, R > r.
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | ||
d > R + r | ||
Tiếp xúc ngoài | ||
d = R – r | ||
2 |
Ta có bảng sau:
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | 0 | d < R - r |
Ở ngoài nhau | 0 | d > R + r |
Tiếp xúc ngoài | 1 | d = R + r |
Tiếp xúc trong | 1 | d = R – r |
Cắt nhau | 2 | R – r < d < R + r |
Điền vào các ô trống trong bảng, biết rằng hai đường tròn (O; R) và (O'; r) có OO' = d, R > r.
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | ||
d > R + r | ||
Tiếp xúc ngoài | ||
d = R – r | ||
2 |
Ta có bảng sau:
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | 0 | d < R - r |
Ở ngoài nhau | 0 | d > R + r |
Tiếp xúc ngoài | 1 | d = R + r |
Tiếp xúc trong | 1 | d = R – r |
Cắt nhau | 2 | R – r < d < R + r |
cho đường tròn (O; R = 2,5) đường thẳng d vẽ OA \(\perp\)d (tại A) và OA = 5cm, vẽ AB là tiếp tuyến đường tròn (O)
a/ xác định vị trí tương đối của d và đường tròn (O), tính AB
b/ gọi C và D lần lượt nằm trên đường tròn (O) và đường thẳng d, chứng minh CD \(\ge\)2,5 cm
Điền vào các vị trí (1); (2) trong bảng sau (R là bán kính của đường tròn, d là khoảng cách từ tâm đến đường thẳng):
A. (1): cắt nhau; (2): 8cm
B. (1): 9cm ; (2): cắt nhau
C. (1): không cắt nhau; (2): 8cm
D. (1): cắt nhau; (2): 6cm
Đáp án A
+ Vì d < R (4cm < 5cm) nên đường thẳng cắt đường tròn
+ Vì đường thẳng tiếp xúc với đường tròn nên d = R = 8cm