Những câu hỏi liên quan
Ngân Nguyễn
Xem chi tiết
Nguyễn Hoàng Tiến
14 tháng 5 2016 lúc 13:07

Dấu bằng xảy ra <=> a=b=c=1

chien van
14 tháng 5 2016 lúc 21:21

dau = xay ra <=> a/b+b/a+c/b = a+b+c => abc+bac+cba = abc+bac+cab =>abc =1 => a+b+c=1

Guyn
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
tth_new
29 tháng 2 2020 lúc 9:03

\(VP=\frac{1}{2}\Sigma\sqrt{4\left(a^2b+a^2c\right)}\le\frac{1}{4}\Sigma\left(4+a^2b+a^2c\right)\)

\(=3+\frac{1}{4}\Sigma ab\left(a+b\right)\le3+\frac{1}{2}\left(a^3+b^3+c^3\right)\)

\(=\frac{1}{2}\left(a^3+b^3+c^3+3abc\right)\le a^3+b^3+c^3\)

Đẳng thức xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Cô Rô Nà_nèk
28 tháng 2 2020 lúc 20:22

mình nghĩ là khi a=b

Khách vãng lai đã xóa
Cô Rô Nà_nèk
28 tháng 2 2020 lúc 20:22

mình là Ask a question

Khách vãng lai đã xóa
Giang Nguyễn
Xem chi tiết
Hoàng Thị Mai Hương
Xem chi tiết
Kiệt Nguyễn
12 tháng 6 2020 lúc 13:36

Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)

\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Trương Thị Hải Anh
Xem chi tiết
Cold Wind
15 tháng 3 2018 lúc 0:26

lần đầu tự làm được 1 bài bđt theo kiểu nháp phát đc liền... hp quớ ~~~

Đặt A = VT

từ giả thiết, ta suy ra:

\(A=\dfrac{b+c+a+b+c-2}{2+a}+\dfrac{c+a+a+b+c-3}{3+b}+\dfrac{a+b+a+b+c-4}{4+c}\)

\(=\dfrac{2\left(a+b+c\right)-2-a}{2+a}+\dfrac{2\left(a+b+c\right)-3-b}{3+b}+\dfrac{2\left(a+b+c\right)-4-c}{4+c}\)

\(=2\left(a+b+c\right)\left(\dfrac{1}{2+a}+\dfrac{1}{3+b}+\dfrac{1}{4+c}\right)-3\)

\(=18\left(\dfrac{1}{2+a}+\dfrac{1}{3+b}+\dfrac{1}{4+c}\right)-3\)

Đặt \(B=\dfrac{1}{2+a}+\dfrac{1}{3+b}+\dfrac{1}{4+c}\)

Áp dụng bđt schwarz cho các số thực không âm:

\(B\ge\dfrac{9}{a+b+c+9}=\dfrac{1}{2}\)

vậy \(A\ge18\cdot B-3=18\cdot\dfrac{1}{2}-3=6\left(đpcm\right)\)

dấu "=" xảy ra khi \(\dfrac{1}{2+a}=\dfrac{1}{3+b}=\dfrac{1}{4+c}=\dfrac{1}{6}\) \(\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=3\\c=2\end{matrix}\right.\)

Hoàng Quang Kỳ
Xem chi tiết
do linh
25 tháng 8 2018 lúc 20:54

vì a, b, c > 0 nên áp dụng bất đẳng thức Cô-si ta có:

\(\frac{a}{c}+\frac{a}{c}+\frac{c}{b}\ge3\sqrt[3]{\frac{a^2}{bc}}=3a\)  (vì \(abc\le1\Rightarrow\frac{1}{bc}\ge a\))

tương tự:  \(\frac{b}{a}+\frac{b}{a}+\frac{a}{c}\ge3b\);            \(\frac{c}{b}+\frac{c}{b}+\frac{b}{a}\ge3c\)

\(\Rightarrow3\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\ge3\left(a+b+c\right)\Leftrightarrowđpcm\)