Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 3 2018 lúc 4:34

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 6 2019 lúc 9:13

 Đáp án D

Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Trần Trang
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
lê duy mạnh
14 tháng 10 2019 lúc 15:55

tích cho t đi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2019 lúc 5:38

Học sinh tự làm

Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
29 tháng 10 2023 lúc 22:37

 a) Tam giác ABM vuông tại A có đường cao AC nên \(BC.BM=BA^2\). CMTT, \(BD.BN=BA^2\) nên \(BC.BM=BD.BN\Leftrightarrow\dfrac{BM}{BD}=\dfrac{BN}{BC}\). Từ đây dễ dàng suy ra \(\Delta BNM~\Delta BCD\left(c.g.c\right)\) (đpcm)

 b) Ta có OQ//BN, OP//BM, mà \(MB\perp NB\) nên suy ra \(OP\perp BN\), từ đó O là trực tâm tam giác BPN.\(\Rightarrow ON\perp BP\)

 Lại có \(QH\perp BP\) nên QH//ON.

Tam giác AON có Q là trung điểm AN, QH//ON nên H là trung điểm OA \(\Rightarrow AH=\dfrac{OA}{2}=\dfrac{R}{2}\) không đổi.

Quang
Xem chi tiết
Sky Gaming
26 tháng 4 2023 lúc 14:15

loading...

b, Xét ΔABE và ΔADB, có: \(\angle ABE=\angle ADB,\angle A\) chung 

⇒ ΔABE ∼ ΔADB (g.g) ⇒ \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\Rightarrow AB^2=AD.AE\)

c, Vì BF là đường kính của (O) nên \(\angle FEB=90^o \Rightarrow FE \ \bot \ EB\) tại E.

ΔABO vuông tại H, có BH là đường cao ⇒ \(AB^2=AH.AO\)

\(\Rightarrow AD.AE=AH.AO \Rightarrow \dfrac{AE}{AH}= \dfrac{AO}{AD} \Rightarrow \Delta AHE \sim \Delta ADO\) (c.g.c)

\(\Rightarrow \angle AEH=\angle AOD \Leftrightarrow \angle HED=\angle AOC=\angle HOC\)

Ta có: \(\angle HEB=\angle HED+\angle DEB=\angle HOC+\angle DCB=90^o\)

\(\Rightarrow HE\ \bot \ EB\); mà \(FE\ \bot \ EB\)

\(\Rightarrow \) E, H, F thẳng hàng.

Vũ Hoàng Anh
Xem chi tiết