Cho tam giác ABC.Trên tia đối của tia AB lấy điểm E, trên tia đối tia AC lấy điểm D. Gọi M là giao điểm của 2 tia phân giác của \(\widehat{ACB}\)
\(\widehat{AED}\)..CMR:
\(\widehat{EMC}=\frac{\widehat{ABC}+\widehat{ADE}}{2}\)
. Cho tam giác ABC . Trên tia đối của AB lấy E, trên tia đối của tia AC lấy D. Gọi M là giao điểm của 2 tia phân giác của \(\widehat{ACB}\) và góc \(\widehat{AED}\) . Chứng minh rằng EMC= \(\dfrac{\widehat{ABC}+\widehat{ADE}}{2}\)
Cho tam giác ABC có AB < AC . Trên tia đối của tia AB lấy điểm D sao cho AB = AD . Trên tia đối của tia AC lấy điểm E sao cho AE = AC a) CM : BE = DC
b ) Kẻ tia phân giác góc BDE cắt BC tại I . CM : tam giác BDI cân.
c ) Kẻ tia phân giác góc ACB cắt DI tại F . CM \(2.\widehat{CFD}=\widehat{CED}+\widehat{CBD}\)
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
098765432rtyuiorewerio65yuy5t
yyyyyyyyyyyyyyyyyyyyyyy
Cho tam giác ABC . Trên tia đối của AB lấy E, trên tia đối của tia AC lấy D. Gọi M là giao điểm của 2 tia phân giác của ^ACB và ^ADE. CMR ^EMC=^ABC+^ADE/2
Cho \(\Delta ABC\), trên tia đối của tia AB lấy điểm E, trên tia đối của tia AC lấy điểm D. Các tia phân giác của \(\widehat{ACB}\)và\(\widehat{AED}\)
cắt nhau ở F. CMR: \(\widehat{ÈFC}\)=\(\frac{\widehat{ABD}+\widehat{ADE}}{2}\)
Em xem lại đề nhé \(\frac{\widehat{ABC}+\widehat{ADE}}{2}\)
Cho tam giác ABC có AB<AC phân giác AD. Trên cạnh AC lấy điểm E sao cho AE=AB
a) CMR \(\widehat{ABD}=\widehat{AED}\)
b)Trên tia đối của tia BA lấy điểm F sao cho BF=EC. CMR tam giác BDF= tam giác EDC.
c)CMR 3 điểm E, D, F thẳng hàng.
đ) CMR AD là đường trung trực của BÉ.
Cho tam giác ABC có AB < AC. vẽ tia đối của tia AB, trên đó lấy điểm D sao cho AD = AC. Vẽ tia đối của AC, trên đó lấy điểm E sao cho AE = AB. So sánh tam giác \(\widehat{ABC}\) và tam giác \(\widehat{AED}\)
Cho tam giác ABC .Trên tia đối của AB lấy điểm E, trên tia đối của AC lấy điểm D.Gọi M là giao điểm của 2 tia PG của 2 góc ACB và AED .Cmr Góc EMC =GÓC ABC +ADE /2
Cho tam giác ABC . Trên tia đôi cua rtia AB lấy điểm E , trên tia đối của tia AC , lấy điểm D. Gọi M là giao điểm của 2 tia phân giác của 2 góc ACB và góc AEB . CMR : góc EMC = \(\frac{ABC+ADE}{2}\)
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D. Từ D kẻ đường thẳng song song với BC cắt tia đối AC tại E. Hai tia phan giác của hai góc AED và góc ABC cắt nhau tại O.
Chứng minh góc BOE = \(\frac{1}{2}\) ( \(\widehat{ABC}+\widehat{ACB}\)
Kẻ OF//BC(F thuộc AC)
=>OF//DE//BC
DE//BC
=>góc DEA=góc ACB
=>góc DEO=1/2*góc ACB
ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF
=>góc EOF=1/2*góc ACB
=>góc DEO=góc EOF
OF//BC
=>góc FOB=góc OBC=1/2góc ABC
góc BOE=góc BOF+góc EOF
=1/2(góc ABC+góc ACB)