tính tổng : 12 + 22 + 32 +...+ n2
bai 1 :tính tổng N=1^2+2^2+3^2+...+99^2
bài2: tính tổng A=1+4+9+16+25+36+...+100000
bài3: tính tổng S=1^2+3^2+5^2+...+49^2
bài4:tính tổng S=1^2+3^2+5^2+...+99^2
giúp mik với mik đang cần gấp
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
xin loi mik danh nham nhe bai do la 10000 nhe
Câu 1: tính tổng s:=1+2+3..+n
Câu 2: Tính tổng s:=1+1/2+1/3+…+1/n
Tính tổng:
\(S= 1^2-2^2+3^2-4^2+...+(-1)^{n+1}.n^2\)
giúp mình nha,thanks
Tính tổng: S(n)= 1^2+ 2^2+ 3^3+...+n^2
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
giúp mình nha,thanks
tính tổng sau:
a) A=1+1/2!+1/3!...+1/n!
b) B= 1+x^2/2+x^2/3+...+x^2/n
1. Viết chương trình tính tích N=1*2*3*...*n (với n được nhập từ bàn phím)
2. Viết chương trình tính tổng A=1/1*3+1/2*4+1/3*5+...+1/n*(n+2)
3. Viết chương trình tính tổng số lẻ có trong dãy từ 0->n (n được nhập từ bàn phím)
4. Viết chương trình in ra màn hình các số chẵn có trong dãy từ 0->n (n được nhập từ bàn phím) và đếm có bao nhiêu số.
5. Viết chương trình in ra màn hình các số lẻ có trong dãy số từ 0->n (n được nhập từ bàn phím) và đếm có bao nhiêu số.
6. Viết chương trình nhập số nguyên n. Tìm và đưa ra màn hình các ước của n.
7. Viết chương trình in ra màn hình các bội của n ( n được nhập từ bàn phím)
8. Viết chương trình tính tổng S=1/1+1/2+1/3+...+1/n (n được nhập từ bàn phím)
Câu 6:
uses crt;
var n,i:integer;
begin
clrscr;
readln(n);
for i:=1 to n do
if n mod i=0 then write(i:4);
readln;
end.
5:
uses crt;
var n,i,dem:integer;
begin
clrscr;
readln(n);
dem:=0;
for i:=0 to n do
if i mod 2=1 then
begin
write(i:4);
dem:=dem+1;
end;
writeln;
writeln(dem);
readln;
end.
Biết : n! = 1 . 2 . 3 ... n . Tính tổng : 1 . 1 ! 2 . 2 ! 3 . 3 ! 4 . 4 !
Bạn hãy tôn trọng người khác bằng cách chọn đúng tên lớp
Tính tổng :
C= 1/1*2*3*4 + 1/2*3*4*5 + ...+ 1/ n*(n+1)*(n+2)*(n+3)
A=(1/1.2.3-1/2.3.4)+(1/2.3.4-1/3.4.5)+..............+(1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3))
A=1/1.2.3-1/(n+1)(n+2)(n+3)
A=1/18-1/(n+1)(n+2)(n+3)
đúng nhé