công trừ phân thức
\(\frac{4x^2-3x+5}{x^3-1}-\frac{1-2x}{x^2+x+1}-\frac{6}{x-1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
công trừ phân thức
\(\frac{1}{2x+2}-\frac{x-1}{3x^2+6x+3}\)
ĐKXĐ : \(x\ne-1\)
\(\frac{1}{2x+2}-\frac{x-1}{3x^2+6x+3}\)
\(=\frac{1}{2\left(x+1\right)}-\frac{x-1}{3\left(x^2+2x+1\right)}\)
\(=\frac{1}{2\left(x+1\right)}-\frac{x-1}{3\left(x+1\right)^2}\)
\(=\frac{3\left(x+1\right)}{2\left(x+1\right)\cdot3\left(x+1\right)}-\frac{2\left(x-1\right)}{3\left(x+1\right)^2\cdot2}\)
\(=\frac{3x+3}{6\left(x+1\right)^2}-\frac{2x-2}{6\left(x+1\right)^2}\)
\(=\frac{3x+3-2x+2}{6\left(x+1\right)^2}\)
\(=\frac{x+5}{6\left(x+1\right)^2}\)
Trừ phân thức
a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c) \(\frac{1}{x}-\frac{1}{x+1}\)
công trừ phân thức
\(\frac{1}{x-3}-\frac{3}{2x+6}-\frac{x}{2x^2-12x+18}\)
\(\frac{1}{x-3}-\frac{3}{2x+6}-\frac{x}{2x^2-12x+18}\)
\(=\frac{1}{x-3}-\frac{3}{2\left(x+3\right)}-\frac{x}{2\left(x^2-6x+9\right)}\)
\(=\frac{1}{x-3}-\frac{3}{2\left(x+3\right)}-\frac{x}{2\left(x-3\right)^2}\)
\(=\frac{2\left(x-3\right)\left(x+3\right)-3\left(x-3\right)^2-x\left(x+3\right)}{2\left(x-3\right)^2\left(x+3\right)}\)
\(=\frac{2\left(x^2-9\right)-3\left(x^2-6x+9\right)-x\left(x+3\right)}{2\left(x-3\right)^2\left(x+3\right)}\)
\(=\frac{2x^2-18-3x^2+18x-27-x^2-3x}{2\left(x-3\right)^2\left(x+3\right)}\)
\(=\frac{-2x^2+15x-45}{2\left(x-3\right)^2\left(x+3\right)}\)
Rút gọn các phân thức đại số sau:
A=\(\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)1
B=\(\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
C=\(\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
D=\(\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
E=\(\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
Giúp mik mấy câu này vs mik đg cần gấp mik cảm ơn mng trước😘😘
Làm ngắn gọn thôi nhé :v
\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)
\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)
\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)
\(A=\frac{x+2}{x-3}\)
\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)
\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{x+2}{x-2}\)
\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{10x}{-x^2+9}\)
\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)
\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)
\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)
\(D=\frac{51x-15}{2x^3-18x}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)
\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)
\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(E=\frac{10x^2+10}{x^4-2x+1}\)
a,\(\frac{3}{x}+\frac{1}{x+3}+\frac{3}{x+6}+\frac{1}{x+7}=\frac{1}{1-x}\)
b, \(\frac{1}{x-5}+\frac{1}{x-2}+\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+3}=\frac{3x-3}{4}\)
c,\(\frac{1}{x-3}+\frac{1}{3x+1}+\frac{10x-13}{4x-6}=\frac{1}{x+1}+\frac{1}{2x-1}+\frac{1}{3x+7}\)
d,\(\frac{x^2+x+1}{2x-1}\left(\frac{3x^2-x+5}{4x-2}-3\right)=8\)
e,\(\frac{2x^2-3}{3x-1}\left(2x-\frac{7+4x}{3x-1}\right)=2\)
f,\(\frac{x\left(3x-1\right)\left(3x^2+1\right)\left(6x^2-3x-1\right)}{\left(x+1\right)^3}=\frac{1}{2}\)
g, \(x\left(x^2+2\right)\left(x^2+2x+8+\frac{12}{x-2}\right)=3\left(x-2\right)\)
Bài 1: Thực hiện phép tính:
a) \(\frac{4x-4}{x^2-4x-4}:\frac{x^2-1}{\left(2-x\right)^2}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right).\frac{x-1}{4x}\)
Bài 2:
1. Tìm n để đa thức x4 - x3 + 6x2 - x + n chia hết cho đa thức x2 - x + 5
2. Tìm n để đa thức 3x3 + 10x2 - 5 + n chia hết cho đa thức 3x + 1
Bài 3:
Cho biểu thức: N = ( 4x + 3 )2 - 2x ( x + 6 ) - 5 ( x - 2 ) ( x + 2 )
Chứng minh biểu thức n luôn dương.
Bài 1.
a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)
\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)
Bài 3.
N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )
= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9( x2 + 4/3x + 4/9 ) + 25
= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x
=> đpcm
Bài 1: rút gọn phân thức
a) \(\frac{14xy^2\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
b) \(\frac{8xy\left(3x-1\right)^2}{12x^3\left(1-3x\right)}\)
c) \(\frac{20x^2-45}{\left(2x+3\right)^2}\)
d) \(\frac{5x^2-10xy}{2\left(2y-x\right)^3}\)
e) \(\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
f) \(\frac{9-\left(x+5\right)^2}{x^2+4x+4}\)
g) \(\frac{32x-8x^2+2x^3}{x^3+64}\)
h) \(\frac{5x^3+5x}{x^4-1}\)
Bài 2: Quy đồng mẫu thức của các phân thức sau
a) \(\frac{7x-1}{2x^2+6x};\frac{5-3x}{x^2-9}\)
b) \(\frac{x+1}{x-x^2};\frac{x+2}{2-4x+2x^2}\)
c) \(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1};\frac{6}{x-1}\)
d) \(\frac{7}{5x};\frac{4}{x-2y};\frac{x-y}{8y^2-2x^2}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
Bài 1:Giải Phương trình
d) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)
e)\(\frac{6}{x^{2^{ }}-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
g) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)
h) \(\frac{x+4}{x^2-3x+2}-\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
Bài 1:
d)ĐKXĐ: \(x\ne8\)
Ta có: \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)
\(\Leftrightarrow\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3x-24}=0\)
\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3\left(x-8\right)}=0\)
MTC=24(x-8)
\(\Leftrightarrow\frac{36}{24\left(x-8\right)}+\frac{72x-480}{24\left(x-8\right)}+\frac{3x-24}{24\left(x-8\right)}-\frac{104x-816}{24\left(x-8\right)}=0\)
\(\Leftrightarrow36+72x-480+3x-24-104x+816=0\)
\(\Leftrightarrow348-29x=0\)
\(\Leftrightarrow-29x+348=0\)
\(\Leftrightarrow x=\frac{-348}{-29}=12\)
Vậy: x=12
e) ĐKXĐ: \(x\ne\pm1\)
Ta có: \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4x+4}+\frac{12x-1}{4-4x}=0\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}+\frac{12x-1}{4\left(1-x\right)}=0\)
MTC=4(x+1)(x-1)
\(\Leftrightarrow\frac{24}{4\left(x-1\right)\left(x+1\right)}+\frac{20x^2-20}{4\left(x-1\right)\left(x+1\right)}-\frac{8x^2-9x+1}{4\left(x-1\right)\left(x+1\right)}-\frac{12x^2-11x-1}{4\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2+11x+1=0\)
\(\Leftrightarrow20x+4=0\)
\(\Leftrightarrow20x=-4\)
\(\Leftrightarrow x=-\frac{4}{20}=-0,2\)(loại)
Vậy: x không có giá trị
g) Ta có: \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)
\(\Leftrightarrow\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}}{\frac{x-1}{x-1}+\frac{x+1}{x-1}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2x}{x-1}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-1}{2x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{4x\cdot\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\cdot2x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{2}=0\)
MTC=2(x+1)
\(\Leftrightarrow\frac{2}{2\left(x+1\right)}-\frac{x+1}{2\left(x+1\right)}=0\)
\(\Leftrightarrow2-x+1=0\)
\(\Leftrightarrow1-x=0\)
\(\Leftrightarrow x=1\)(loại vì không thỏa mãn ĐKXĐ)
Vậy: x không có giá trị
1)2x(25x-4)-(5x-2)(5x+1)=8 / 5)\(2\left(x-2\right)-3\left(3x-1\right)=\left(x-3\right)\)
2)x(4x-3)-(2x-2)(2x-1)=5 / 6)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
3)\(\frac{5}{2x+3}+\frac{3}{9-x^2}=\frac{8}{7\left(x=3\right)}\) / 7)\(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)
4)\(\frac{2}{3\left(x-2\right)}+\frac{5}{12-3x^2}=\frac{3}{4\left(x+2\right)}\) / 8)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Đây là lớp 8 nha các b giúp mk với
Do mk viết nhầm