Ai lm đc cho xong 3 t i c k: (lm đc rồi)
Rút gọn:
\(\frac{x^3+2x^2-1}{x^3+2a^2+2a+1}\)
tìm x sao cho:
\(\frac{x-1}{9x+7}=\frac{a^2}{b^2}\)
HELP ME, lm đc mk tick cho......
Bài 1 : rút gọn
\(C=a\sqrt{\frac{4a^2-2a-b}{b^2}}-2a-b\)
Bài 2:tìm x
\(\sqrt{5-3x}=\sqrt{2x+8}\)
\(\sqrt{5-3x}=\sqrt{2x+8}\)
\(\Leftrightarrow5-3x=2x+8\)
\(\Leftrightarrow-3x-2x=8-5\)
\(\Leftrightarrow-5x=3\)
\(\Leftrightarrow x=\frac{-3}{5}\)
P/S" ko chắc
Mk sửa đề lại 1 chút ( chả bt mk nhìn thế nào mak vt lộn hết cả đề )......
BÀI 1: Rút gọn
\(C=a\sqrt{\frac{4a^2-4ab+b^2}{a^2}}-2a-b\)
\(C=a\sqrt{\frac{4a^2-4ab+b^2}{a}}-2a-b.\)
\(=a\frac{\sqrt{\left(2a-b\right)^2}}{\sqrt{a}}-2a-b\)
\(=\sqrt{a}\left(2a-b\right)-2a-b\)
cho biểu thức \(P=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{\sqrt{a}}\right):\left(\frac{2a+\sqrt{a}-1}{1-a}+\frac{2a\sqrt{a}+a-\sqrt{a}}{1+a\sqrt{a}}\right)\)
a. rút gọn P KQ=\(\frac{1-\sqrt{a}+a}{\sqrt{a}}\)
b. tính P khi \(a=\frac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13-\sqrt{48}}}}}+1\) KQ =7/3
c. tìm x để P>x
lm hooj t câu c vs câu a,b, t lm hết r
Cho bt : D = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x+1}}\right).\frac{\left(1-x\right)^2}{2}\)
a) Rút gọn bt
b)tìm x để D dương
c)Tìm giá trị lớn nhất của D
(( phần nào k lm đc các bạn có thể bỏ...Cảm ơn nhiều))
help me! ^.^
Cho biểu thức \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^{2-4}}-\frac{2-x}{2+x}\right):\left(\frac{x^{2-3x}}{2x^2-x^3}\right)\)
a,Tìm điều kiện của x để A xác định và rút gọn biểu thức A.
b, Tìm giá trị của x để A.\(\frac{1}{x}<1\)
giúp mh cái nka mọi ng mh đag cần gấp lắm ! ths you very much ! Ai júp mh k ???? huhuhuhuh
câu a mh lm đc oy các bn júp mh câu b
1) \((3\frac{1}{2}-2x).1\frac{1}{3}=7\frac{1}{3}\)
2) \(0,125-(1-\frac{5}{7}x=\frac{-9}{8}\)
3) \(2x +50\%.x=\frac{-2}{3}\)
4) \(\frac{2}{7}.x+\frac{1}{7}=\frac{-11}{7}\)
Lm đc câu nào thì lm giúp mik vs ạ
1,\(\left(\frac{7}{2}-2x\right).\frac{4}{3}=\frac{22}{3}\)
\(x.\left(\frac{7}{2}-2\right)=\frac{22}{3}:\frac{4}{3}=\frac{22}{3}.\frac{3}{4}=\frac{11}{2}\)
\(x.\frac{3}{2}=\frac{11}{2}\)
\(x=\frac{11}{2}:\frac{3}{2}=\frac{11}{2}.\frac{2}{3}=\frac{11}{3}\)
bài 1:Cho M=(1+$\frac{a}{a^{2}+1}$) :($\frac{a}{a^{2}-1}$-$\frac{2a}{a^{3}-a^{2}+a-1}$ )
a)tìm điều kiện xác định
b)rút gọn M
bài 2:cho f(x)=2$x^{2}$+ax+1 và g(x)=x-3
tìm a để f(x):g(x) dư 4
cho A=\(\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\right]\)
a) rút gọn A
b) tìm A khi x = \(-\frac{1}{2}\)
c) tìm x để 2A = 1
Câu 1:
\(A=\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}+x\right)\left(\frac{\left(1+x\right)\left(x^2-x+1\right)}{1+x}+x\right)\right]\)
\(=\frac{x\left(1-x^2\right)}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\frac{x\left(1-x^2\right)}{\left(1+x^2\right)\left(1+x\right)^2\left(x-1\right)^2}=\frac{x}{\left(1+x^2\right)\left(x^2-1\right)}=\frac{x}{x^4-1}\)
Câu 2: thay x vào A có :
\(A=\frac{-\frac{1}{2}}{\frac{1}{4}-1}=\frac{2}{3}\)
Câu c :
2A=1 => \(\frac{x}{x^4-1}=\frac{1}{2}\)ĐK \(\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x^4-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^3-x^2+x-1\right)=0\)
\(\left(x+1\right)\left(x^2+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)loại do điều kiện vậy ko có giá trị nào của x thỏa mãn
Tính tỉ lệ thức bằng cách tìm x,y,z
a. 3(x-1)=2(y-2) ; 4(y-2)=3(z-3) và 2x+3y-z= 50
b.\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}và-x-y-z=-49\)
c.\(\frac{x}{y}=\frac{3}{2};\frac{y}{z}=\frac{5}{7}và\left|2x-3y+5z\right|=1\)
d.\(\frac{1+4y}{13}=\frac{1+6y}{19}=\frac{1+8y}{5x}\)
Mấy bn lm ơn jup mk nka, mk cần gấp ik. Lm đc câu nào thì làm nk
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
1) Tìm x biết : a) \(a^2x+x=2a^2-3\) ; b) \(a^2x+3ax+9=a^2\left(a\ne0;a\ne-3\right)\)
2) Cho a + b + c = 3,rút gọn biểu thức \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
3) Chứng minh rằng nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1;x=y+z\)thì \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
b. Sử dụng các hằng đẳng thức
\(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Do (a - b) + (b - c) + (c - a) = 0 nên áp dụng hđt \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:
\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)
Bài 1 :
\(b,ax^2+3ax+9=a^2\)
\(\Leftrightarrow a^2x+3ax+9-a^2=0\)
\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\)
\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)
Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\)
\(\Leftrightarrow ax=a-3\)
Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\)
c.Ta có \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xz}-\frac{2}{xy}+\frac{2}{yz}=1\)
Do x = y + z nên \(\frac{-2}{xz}-\frac{2}{xy}+\frac{2}{yz}=\frac{-2y-2z+2\left(y+z\right)}{\left(y+z\right)zy}=0\)
Vậy nên \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\)